
组合数
文章平均质量分 86
ez_lcw
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
两道类似的概率期望题目
前几周的模拟赛才遇到过类似的套路,现在在 AT 上遇到又不会了……于是都记录一下。其实写完之后还是感觉不太能熟练运用……,可能需要多做题做理解。【XSY4214】quq题面:http://192.168.102.138/JudgeOnline/problem.php?cid=1818&pid=2题解:设 m=maxaim=\max a_im=maxai,即编号最大的可能被扭到的蛋。首先先将扭蛋机按 aia_iai 从小到大排序。先考虑最优策略是什么,设 bib_ibi 表示 ≥i原创 2021-12-17 22:36:15 · 513 阅读 · 0 评论 -
【loj2504】小H爱染色(组合,多项式)
记 HiH_iHi 表示给 iii 个球染色,染两次,每次染 mmm 个,其中要求第一个球必须染。那么题目即求:∑i=0n−1H(n−i)F(i)\sum_{i=0}^{n-1}H(n-i)F(i)i=0∑n−1H(n−i)F(i)nnn 很大不好求,有种比较神仙的做法。设 F(i)=∑j=0mfjijF(i)=\sum_{j=0}^mf_ji^jF(i)=∑j=0mfjij,对每个 jjj 分别求解:∑j=0mfj∑i=0n−1H(n−i)ij\sum_{j=0}^mf_j\sum_原创 2021-10-25 18:52:25 · 323 阅读 · 0 评论 -
范德蒙德卷积
∑i=0k(ni)(mk−i)=(n+mk)\sum_{i=0}^k \binom{n}{i}\dbinom{m}{k-i}=\binom{n+m}{k}i=0∑k(in)(k−im)=(kn+m)可以理解为在大小分别为 n,mn,mn,m 的两个堆中共取 kkk 个物品,枚举在两个堆中各取了多少个。根据 (mi)=(mm−i)\dbinom{m}{i}=\dbinom{m}{m-i}(im)=(m−im) 可以得到许多推论:∑i=1n(ni)(ni−1)=(2nn+1)∑i=0n(n原创 2021-10-22 09:35:03 · 1654 阅读 · 0 评论 -
【XSY3032】画画(Burnside引理,计数)
为了方便,我们肯定是先考虑有标号图的个数,再用 Burnside 引理去重,但是用 Burnside 引理时得先考虑清楚映射集合 XXX 是哪个集合 AAA 到哪个集合 BBB 的哪些映射,以及作用在 AAA 上的置换群 GGG 是什么。首先考虑两张有标号图等价的定义:存在一个置换使得第一张图在置换作用后得到的图与第二张图完全相同,也就是说任意一条边 (u,v)(u,v)(u,v) 要么在两者中同时存在,要么在两者中同时不存在。那么自然地就能理清映射关系:XXX 是由大小为 n×(n−1)2\dfrac原创 2021-10-09 21:51:41 · 153 阅读 · 0 评论 -
【XSY3395】逃亡(概率与期望,组合数)
首先 “被经过的整点的期望个数” 不好求,我们可以把它看成 “每个整点被经过的概率的和”。对于某个整点,求 “它被任意一个人经过的概率” 不好求,我们可以求 “它不被任意一个人经过的概率”,那么现在的问题是求某个整点不被某个人经过的概率,或者说求某个整点被某个人经过的概率。把这个人看作原点,然后设这个整点的坐标为 iii(不妨设 i≥0i\geq 0i≥0,i<0i<0i<0 同理)。考虑转化到坐标-时间图像上,现在问题转化为:从原点开始走,每一步能往右上/右下走,求走 nnn 步,过原创 2021-10-07 17:23:49 · 193 阅读 · 0 评论 -
【XSY4186】Binomial(结论,数位DP)
题面Binomial题解设 ord(n)\operatorname{ord}(n)ord(n) 表示 nnn 分解质因数后 ppp 的幂次,那么我们就是对于每一个 kkk 要求有多少 0≤m≤n0\leq m\leq n0≤m≤n 使得 ord(Cnm)=k\operatorname{ord}\left(C_n^m\right)= kord(Cnm)=k。首先有一个很显然的式子:ord(n!)=∑k=1∞⌊npk⌋\operatorname{ord}(n!)=\sum\limits_{k=1原创 2021-09-16 12:53:49 · 144 阅读 · 0 评论 -
【bzoj3812】【清华集训2014】主旋律(容斥,计数)
毒 瘤 计 数!XSY 题意不是很清楚,这里给出更加清楚的:给定一张 nnn 个点 mmm 条边的无向图,保证该图整个图为一个强联通分量,且无重边自环。现在需要求出:有多少种删边方案,使得删完边后,整个图依旧是一个强联通分量。数据范围:n≤15,m≤n(n−1)n\leq 15,m\leq n(n-1)n≤15,m≤n(n−1)。记 E[U,V]E[U,V]E[U,V] 表示题目给的所有边中,起点在 UUU 中、终点在 VVV 中的所有边的集合,其中 U,VU,VU,V 为点集。对于一个点集 SSS原创 2021-07-21 09:34:35 · 323 阅读 · 0 评论 -
【POJ1430】Binary Stirling Numbers(第二类斯特林数,组合数)
求 {nm} mod 2\begin{Bmatrix}n\\m\end{Bmatrix}\bmod 2{nm}mod2 的值。由第二类斯特林数的递推公式:{nm}={n−1m−1}+m{nm}\begin{Bmatrix}n\\m\end{Bmatrix}=\begin{Bmatrix}n-1\\m-1\end{Bmatrix}+m\begin{Bmatrix}n\\m\end{Bmatrix}{nm}={n−1m−1}+m{nm}可知:{nm}≡{{n−1m−1}if m m原创 2021-07-17 16:03:04 · 273 阅读 · 1 评论 -
【XSY4074】intervcl C(推式子,根号分类)
题面intervcl C题解首先询问和原数列顺序无关,那么不妨把数列从大到小排序,仍记为 aia_iai。那么题目就是给出 [l,r][l,r][l,r],问 al,al+1,⋯ ,ara_l,a_{l+1},\cdots,a_ral,al+1,⋯,ar 中任取 kkk 个数,这 kkk 个数中最大值的期望。由于这是等概率选择,每种情况出现的概率为 1(mk)\dfrac{1}{\binom{m}{k}}(km)1(记 m=r−l+1m=r-l+1m=r−l+1),所以我们只需计算每种原创 2021-07-15 10:57:01 · 134 阅读 · 0 评论 -
【XSY3804】QQ数(莫比乌斯函数,容斥)
明显地,这个QQ数可以用 μ\muμ 表示,于是询问就变成了这样:∑i=1n∑d∣i(1−μ(d)2)=∑d=1n⌊nd⌋(1−μ(d)2)\begin{aligned}& \sum_{i=1}^n\sum_{d|i}\left(1-\mu(d)^2\right)\\=& \sum_{d=1}^n\left\lfloor\frac{n}{d}\right\rfloor\left(1-\mu(d)^2\right)\end{aligned}=i=1∑nd∣i∑(1−μ(d)2原创 2020-12-31 13:32:27 · 156 阅读 · 0 评论 -
【SDOI201】黑白棋 /【XSY3064】小奇的博弈(博弈,nim,dp,组合数)
显然,如果白棋往左,黑棋往右,最后肯定会两两碰在一起,就像这样:红框框起来的是会碰在一起的棋子。(我们把会碰到一起的棋子称为一对棋子)如下图就是碰在一起的一种情况:那么现在假设是 AAA 遇到了这种情况,那么无论他操作的是白棋或黑棋,他肯定会输。因为另一个人可以操控棋子跟着 AAA 的棋子走,一直保持棋子两两紧逼的状态,直到所有棋子都堆在一边,这时 AAA 就无路可走了,失败。不妨设开始前每对棋子之间的距离为 a1,a2,…,ak2a_1,a_2,\dots,a_{\frac{k}{2}}a1原创 2020-08-14 19:09:38 · 225 阅读 · 0 评论