在处理复杂的自然语言处理任务时,通过结合向量存储与检索技术,我们可以有效地增强大语言模型(LLM)的推理能力。LangChain提供了一套强大的工具来实现这些功能。本文将带您深入了解LangChain中的向量存储和检索抽象,并通过代码示例展示如何将它们集成到实际应用中。
技术背景介绍
向量存储和检索是LLM工作流中重要的组成部分,特别是在检索增强生成(RAG)应用中。通过将文本数据表示为向量,我们能够在海量数据中快速检索出与查询相关的内容。这一过程对于需要依据上下文信息进行推理的应用至关重要。
核心原理解析
文档(Documents)
在LangChain中,Document
是一个基本的抽象,用于表示文本单元及其相关的元数据。每个文档包含以下两个属性:
page_content
: 表示文本内容的字符串。metadata
: 用于存储文档来源等附加信息的字典。
向量存储(Vector Stores)
向量存储通过将文本转换为数值向量来实现。通过向量相似度度量,我们可以在存储中找到与查询相似的内容。实现这一目标的关键在于嵌入模型,它决定了文本数据如何转换为数值向量。
检索器(Retrievers)
检索器是可以被整合到LangChain表达式语言链中的组件。它们实现了一组标准的方法,用于根据不同的策略从向量存储中检索文档。
代码实现演示
以下是使用LangChain库进行向量存储和检索的代码示例:
第一步:设置环境与生成文档
!pip install langchain langchain-chroma langchain-openai
from langchain_core.documents import Document
documents = [
Document(