5.时间序列分析例题1——新能源汽车保有量预测

本文利用时间序列分析中的ARIMA(0,2,0)模型预测2020至2022年新能源汽车保有量。通过对数据的图形分析和残差检验,确认模型识别良好,表现为白噪声序列。尽管平稳r方接近0,但高R方值(0.99)表明模型估计效果优秀。正态化BIC验证了模型选择的最优性。最终给出了95%置信区间的预测结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

例题1:
通过时间序列分析预测2020、2021与2022三年的新能源汽车保有量,已有的数据如下:
在这里插入图片描述
1.画出时间序列图:
在这里插入图片描述
在这里插入图片描述

图像:
在这里插入图片描述
然后使用专家建模器:
在这里插入图片描述
在这里插入图片描述
合适的模型为ARIMA(0,2,0)模型。即pq为0,差分阶数为2。(公式见之前的文章)
残差的白噪声检验:
从残差的ACF和PACF图可以知道,所有滞后阶数的自相关系数和偏自相关系数和0没有显著差异。因此,对这些数据来说,ARIMA(0,2,0)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值