例题1:
通过时间序列分析预测2020、2021与2022三年的新能源汽车保有量,已有的数据如下:
1.画出时间序列图:
图像:
然后使用专家建模器:
合适的模型为ARIMA(0,2,0)模型。即pq为0,差分阶数为2。(公式见之前的文章)
残差的白噪声检验:
从残差的ACF和PACF图可以知道,所有滞后阶数的自相关系数和偏自相关系数和0没有显著差异。因此,对这些数据来说,ARIMA(0,2,0)
例题1:
通过时间序列分析预测2020、2021与2022三年的新能源汽车保有量,已有的数据如下:
1.画出时间序列图:
图像:
然后使用专家建模器:
合适的模型为ARIMA(0,2,0)模型。即pq为0,差分阶数为2。(公式见之前的文章)
残差的白噪声检验:
从残差的ACF和PACF图可以知道,所有滞后阶数的自相关系数和偏自相关系数和0没有显著差异。因此,对这些数据来说,ARIMA(0,2,0)