AI基础1--线性代数(TODO)

1 前言

关于矩阵的运算,其实之前写过一篇:算法矩阵提速原理_矩阵分块计算速度会更快嘛-CSDN博客

还是那句话,计算机懂个毛的高等数学。只是矩阵运算的并行性和结构化特点与 SIMD/GPU 的执行模型非常一致。在实际硬件实现中,许多矩阵运算会被映射为 SIMD/GPU 指令执行流程。因此,在软件建模或算法模拟过程中,可以使用矩阵运算来类比、模拟 SIMD/GPU 的行为,特别是在信号处理、图像处理和深度学习等场景中。

好了,简而言之,线性代数就是现代算法的通用建模工具

矩阵计算和现代计算机体系的关系:

特性映射到计算机体系
向量加法对应 SIMD 指令、GPU 多线程加法
矩阵乘法可以用高效缓存结构 + 并行乘加运算执行
向量点积、矩阵转置等可以流水线、并行、块优化处理
稀疏矩阵操作对应更高效的数据结构和存储优化

2 向量基础

2.1 加减法

2.2 点积

3 矩阵基础

4 矩阵与空间变换

5 线性方程组与矩阵求解

6 向量空间、线性相关与秩

7 特征值、特征向量

8 奇异值分解(SVD)

太好了,下面是为程序员量身定制的 线性代数学习路线,每一章都结合了编程练习建议(用 Python + NumPy 实现为主),帮助你快速上手并将数学知识变成“可运行的代码理解”。


🧠 学习路线:程序员视角的线性代数(附练习建议)


✅ 第 1 章:向量基础

📚 你需要掌握:
  • 向量是有方向和大小的“数据集合”

  • 向量加法、数乘、点积的几何意义

💻 编程练习建议:
  • 定义两个向量 a = np.array([1, 2]), b = np.array([3, 4]),实现向量加法、点积、长度

  • 画出向量和加法结果(用 matplotlib)


✅ 第 2 章:矩阵基础

📚 你需要掌握:
  • 矩阵是二维数据容器,可以表示线性变换

  • 矩阵乘法规则、含义、维度匹配

💻 编程练习建议:
  • 构造 2x2 矩阵并乘以向量,观察变换效果(例如旋转、缩放)

  • @ 操作符或 np.dot() 实现乘法


✅ 第 3 章:矩阵与空间变换(最重要)

📚 你需要掌握:
  • 矩阵表示线性变换(旋转、缩放、反射等)

  • 基变换、坐标变换

💻 编程练习建议:
  • 用矩阵表示图形变换:旋转、镜像一个 2D 图形(如三角形)

  • 实现:平面中物体绕原点旋转任意角度的代码(配合 matplotlib 动画)


✅ 第 4 章:线性方程组与矩阵求解

📚 你需要掌握:
  • 线性方程组 Ax = b 的解法

  • np.linalg.solve() 的使用

💻 编程练习建议:
  • 写一个程序解线性方程组,并验证解的正确性

  • 随机生成 A, b,求解并可视化几何解(如果是2x2系统)


✅ 第 5 章:向量空间、线性相关与秩

📚 你需要掌握:
  • 向量是否线性相关(能否被其他向量线性组合)

  • 矩阵秩 rank 的含义

💻 编程练习建议:
  • 实现一个函数判断一组向量是否线性相关

  • np.linalg.matrix_rank() 验证秩


✅ 第 6 章:特征值、特征向量(AI 必学)

📚 你需要掌握:
  • 特征向量是保持方向不变的向量

  • 应用于图神经网络、PCA、图聚类等

💻 编程练习建议:
  • np.linalg.eig() 求一个对称矩阵的特征值和特征向量

  • 可视化矩阵对向量的变换效果,观察哪些向量不变(即特征向量)


✅ 第 7 章:奇异值分解(SVD)

📚 你需要掌握:
  • 数据压缩、推荐系统核心工具

  • 将矩阵拆解为旋转 + 缩放 + 旋转组合

💻 编程练习建议:
  • np.linalg.svd() 分解矩阵,观察 U, Σ, V 的作用

  • 用 SVD 做图像压缩(如只保留前 k 个奇异值重构图像)


✅ 第 8 章:实战综合应用(选学)

📚 推荐项目:
  • 图像变换(图像=矩阵)

  • 用线性代数实现简单的线性回归(求解最小二乘)

  • 实现 PCA 主成分分析(降维)


🎯 附加建议

  • 推荐工具包:

    • numpy, matplotlib:基础向量矩阵计算

    • scipy.linalg:更高级分解、求解

    • sympy:符号线性代数(适合推导验证)

  • 学习资料推荐(中英混搭):

    • 《3Blue1Brown:线性代数的本质》(YouTube)

    • 《线性代数及其应用》(吉尔伯特·斯特朗)

    • 《Linear Algebra for Everyone》(英文 MIT OCW)

    • B站“MIT线性代数中文讲解”


是否需要我做一个 Markdown 版电子学习手册,或者把练习代码模板也一并打包?我可以给你一个 ZIP 或 GitHub 教学仓库结构。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值