1 前言
关于矩阵的运算,其实之前写过一篇:算法矩阵提速原理_矩阵分块计算速度会更快嘛-CSDN博客
还是那句话,计算机懂个毛的高等数学。只是矩阵运算的并行性和结构化特点与 SIMD/GPU 的执行模型非常一致。在实际硬件实现中,许多矩阵运算会被映射为 SIMD/GPU 指令执行流程。因此,在软件建模或算法模拟过程中,可以使用矩阵运算来类比、模拟 SIMD/GPU 的行为,特别是在信号处理、图像处理和深度学习等场景中。
好了,简而言之,线性代数就是现代算法的通用建模工具。
矩阵计算和现代计算机体系的关系:
特性 | 映射到计算机体系 |
---|---|
向量加法 | 对应 SIMD 指令、GPU 多线程加法 |
矩阵乘法 | 可以用高效缓存结构 + 并行乘加运算执行 |
向量点积、矩阵转置等 | 可以流水线、并行、块优化处理 |
稀疏矩阵操作 | 对应更高效的数据结构和存储优化 |
2 向量基础
2.1 加减法
2.2 点积
3 矩阵基础
4 矩阵与空间变换
5 线性方程组与矩阵求解
6 向量空间、线性相关与秩
7 特征值、特征向量
8 奇异值分解(SVD)
太好了,下面是为程序员量身定制的 线性代数学习路线,每一章都结合了编程练习建议(用 Python + NumPy 实现为主),帮助你快速上手并将数学知识变成“可运行的代码理解”。
🧠 学习路线:程序员视角的线性代数(附练习建议)
✅ 第 1 章:向量基础
📚 你需要掌握:
向量是有方向和大小的“数据集合”
向量加法、数乘、点积的几何意义
💻 编程练习建议:
定义两个向量
a = np.array([1, 2])
,b = np.array([3, 4])
,实现向量加法、点积、长度画出向量和加法结果(用 matplotlib)
✅ 第 2 章:矩阵基础
📚 你需要掌握:
矩阵是二维数据容器,可以表示线性变换
矩阵乘法规则、含义、维度匹配
💻 编程练习建议:
构造 2x2 矩阵并乘以向量,观察变换效果(例如旋转、缩放)
用
@
操作符或np.dot()
实现乘法
✅ 第 3 章:矩阵与空间变换(最重要)
📚 你需要掌握:
矩阵表示线性变换(旋转、缩放、反射等)
基变换、坐标变换
💻 编程练习建议:
用矩阵表示图形变换:旋转、镜像一个 2D 图形(如三角形)
实现:平面中物体绕原点旋转任意角度的代码(配合 matplotlib 动画)
✅ 第 4 章:线性方程组与矩阵求解
📚 你需要掌握:
线性方程组
Ax = b
的解法
np.linalg.solve()
的使用💻 编程练习建议:
写一个程序解线性方程组,并验证解的正确性
随机生成
A, b
,求解并可视化几何解(如果是2x2系统)
✅ 第 5 章:向量空间、线性相关与秩
📚 你需要掌握:
向量是否线性相关(能否被其他向量线性组合)
矩阵秩 rank 的含义
💻 编程练习建议:
实现一个函数判断一组向量是否线性相关
用
np.linalg.matrix_rank()
验证秩
✅ 第 6 章:特征值、特征向量(AI 必学)
📚 你需要掌握:
特征向量是保持方向不变的向量
应用于图神经网络、PCA、图聚类等
💻 编程练习建议:
用
np.linalg.eig()
求一个对称矩阵的特征值和特征向量可视化矩阵对向量的变换效果,观察哪些向量不变(即特征向量)
✅ 第 7 章:奇异值分解(SVD)
📚 你需要掌握:
数据压缩、推荐系统核心工具
将矩阵拆解为旋转 + 缩放 + 旋转组合
💻 编程练习建议:
用
np.linalg.svd()
分解矩阵,观察 U, Σ, V 的作用用 SVD 做图像压缩(如只保留前 k 个奇异值重构图像)
✅ 第 8 章:实战综合应用(选学)
📚 推荐项目:
图像变换(图像=矩阵)
用线性代数实现简单的线性回归(求解最小二乘)
实现 PCA 主成分分析(降维)
🎯 附加建议
推荐工具包:
numpy
,matplotlib
:基础向量矩阵计算
scipy.linalg
:更高级分解、求解
sympy
:符号线性代数(适合推导验证)学习资料推荐(中英混搭):
《3Blue1Brown:线性代数的本质》(YouTube)
《线性代数及其应用》(吉尔伯特·斯特朗)
《Linear Algebra for Everyone》(英文 MIT OCW)
B站“MIT线性代数中文讲解”
是否需要我做一个 Markdown 版电子学习手册,或者把练习代码模板也一并打包?我可以给你一个 ZIP 或 GitHub 教学仓库结构。