4982:踩方格
总时间限制:
1000ms
内存限制:
65536kB
描述
有一个方格矩阵,矩阵边界在无穷远处。我们做如下假设:
a. 每走一步时,只能从当前方格移动一格,走到某个相邻的方格上;
b. 走过的格子立即塌陷无法再走第二次;
c. 只能向北、东、西三个方向走;
请问:如果允许在方格矩阵上走n步,共有多少种不同的方案。2种走法只要有一步不一样,即被认为是不同的方案。
输入
允许在方格上行走的步数n(n <= 20)
输出
计算出的方案数量
样例输入
2
样例输出
7
下面是思路
该问题主要用DFS和递归解决
#include<cstdio>
#include<iostream>
using namespace std;
int n;//n表示输入的步数
int visited[50][50] = { 0 };//用一个二维数组表示方格是否塌陷
int DFS(int r, int c, int m);//函数声明
int main() {
cin >> n;//输入走多少步
cout << DFS(25, 0, 0)<<endl;//前面的(25,0)表示初始位置在的坐标,后面一个0表示目前走了多少步
return 0;
}
int DFS(int r,int c,int m) {
if (visited[r][c] == 1)//该方格已经塌陷 不能进入 返回0种方案
return 0;
if (m == n)//成功到达 返回一种方案
return 1;
visited[r][c] = 1;//标记该方格已经塌陷
int num = DFS(r + 1, c, m + 1) + DFS(r , c+1, m + 1) + DFS(r , c-1, m + 1);//将目前方格往后继续走的全部情况数目代入num
visited[r][c] = 0;//从上一步开始另一种方案 刷新现在塌陷的方格
return num;//返回num给上一步
}
//需要注意DFS函数里每个语句的顺序