pytorch修改resnet18 输入通道

该博客介绍了两种方法在PyTorch中将ResNet18模型用于1通道输入。方法一是使用`torch.expand()`将1通道输入扩展为3通道。方法二是直接修改预训练模型的conv1权重,使其适应1通道输入。通过加载预训练权重并使用`torchsummary`模块进行模型概览,展示了模型结构和参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

方法一:扩张1通道为3通道,利用torch.expand()方法

    model = resnet18(pretrained=False) # 主干提取网络
    model.load_state_dict(torch.load('./resnet18-5c106cde.pth'), strict=False)
    print(model)
    par = summary(model, (3, 224, 224), device='cpu')
    print(par)

    net = RFNet( model, 1, use_bn=True) # 输出类别 num_classes
    # print(model)
    input1 = torch.rand((1,3,256,256)) # 输入通道为1
    input1 = input1.expand(1,3,256,256) # 扩展为3通道

    print(input1.shape)
    input2 = torch.rand((1,1,256, 256))
    output = net(input1,input2)
    print(output.shape)

方法二:修改字典参数

import torchvision.models as models
import torch
import torch.nn as nn
from torchsummary import summary

resnet18 = models.resnet18(pretrained=False)
resnet18.conv1= nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3,bias=False)

# print(resnet18)
pretrained_dict = torch.load('./resnet/resnet18-5c106cde.pth')
# for k, v in pretrained_dict.items():
#     print(k)

x = torch.rand(64, 1, 7, 7)
pretrained_dict["conv1.weight"] = x

conv1 = pretrained_dict["conv1.weight"]
print(conv1.shape)
resnet18.load_state_dict(pretrained_dict)

# print(resnet18)
par = summary(resnet18, (1, 224, 224),device='cpu')
print(par)

<think>好的,我现在需要回答用户关于PyTorchResNet50模型输入数据批次维度是否改变的问题。首先,我得确认用户的问题核心是什么。用户可能是在使用ResNet50时,想知道输入数据的批次维度在通过模型后会不会变化,比如被修改或丢失。这对数据处理流程很重要,特别是在构建整个模型管道时,可能需要保持批次维度的一致性。 接下来,我应该回顾ResNet50的结构。ResNet50是一个深度卷积神经网络,包含多个卷积层、BatchNorm层、ReLU激活函数,以及残差块。通常,卷积层不会改变批处理的大小,因为它们独立处理每个样本。但需要确认是否有任何层可能改变批次维度。例如,全连接层通常会将特征图展平,但最后的全连接层输出的是每个样本的类别分数,所以批次维度应保持不变。 然后,考虑PyTorch的实现。在PyTorchResNet实现中,输入的形状是(batch_size, channels, height, width),经过各层处理后,最后的全局平均池化层会将空间维度(height和width)降为1x1,之后通过view或flatten操作将每个样本的特征展平为一维向量,输入全连接层。此时,输出的形状应该是(batch_size, num_classes),所以批次维度依然存在,大小不变。 举个例子,假设输入是(32,3,224,224),经过ResNet50后输出应为(32,1000)(假设num_classes=1000),所以批次维度32保持不变。这说明ResNet50的设计中保持了批次维度,没有改变。 另外,需要考虑是否有特殊情况,比如模型被修改过,或者某些层被替换,可能会影响批次维度。但默认情况下,标准的ResNet50不会改变批次大小。因此,在正常使用情况下,用户的输入数据的批次维度在模型前向传播过程中不会发生改变。</think>在PyTorchResNet50模型中,**输入数据的批次维度不会发生改变**。以下是关键分析步骤: --- ### 1. **输入输出维度规则** - **输入形状**:`(batch_size, channels, height, width)` 例如:`(32, 3, 224, 224)` 表示批次大小为32的RGB图像。 - **输出形状**:`(batch_size, num_classes)` 例如:`(32, 1000)` 表示32个样本分别对应1000个类别的预测结果。 **结论**:批次维度 `batch_size` **始终保留**。 --- ### 2. **关键层的行为验证** #### (1) 卷积层(Conv2d) - 对每个样本独立操作,不影响批次维度。 - 例如:输入 `(32, 3, 224, 224)` → 输出 `(32, 64, 112, 112)`(仅改变通道和空间维度)。 #### (2) 全局平均池化(Global Average Pooling) - 将空间维度压缩为 `1x1`,但保留批次维度。 - 例如:输入 `(32, 2048, 7, 7)` → 输出 `(32, 2048, 1, 1)`。 #### (3) 全连接层(Linear) - 输入需展平为 `(batch_size, features)`,但不会改变批次大小。 - 例如:展平后输入 `(32, 2048)` → 输出 `(32, 1000)`。 --- ### 3. **实验验证代码** ```python import torch from torchvision.models import resnet50 # 初始化模型 model = resnet50(pretrained=True) model.eval() # 模拟输入:批次大小为32 input_tensor = torch.randn(32, 3, 224, 224) output = model(input_tensor) # 检查输出形状 print(output.shape) # 输出应为 torch.Size([32, 1000]) ``` --- ### 4. **特殊情况说明** - 如果自定义修改模型(例如删除了全连接层),可能改变输出维度,但**默认实现不会影响批次维度**。 - 异常输入(如批次维度为0)会报错,属于输入合法性检查问题,与模型设计无关。 --- ### 总结 在PyTorchResNet50中,**输入数据的批次维度会从始至终保持不变**。这是通过逐层独立处理样本、保留批次维度的设计保证的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值