公平博弈必输策略及Python改进:基金补仓

本文探讨公平博弈为何可能导致长期亏损,并提供一种基于Python的基金补仓策略改进。通过模拟不同场景,说明在基金投资中,适当调整投入策略能有效改善收益。文章以天弘中证计算机主题ETF联接C为例,展示如何根据净值变化动态调整持仓倍数,以应对市场波动。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

公平博弈必输策略及Python改进:基金补仓

前言

考虑一个场景:一名投机人每次拿出当前本金的10%进行抛硬币测试(公平博弈,输赢均50%),一共测试60次,最终输赢各30次,那么他的本金将是多少?

计算:x = 1.1^30 * 0.9^30 * 100% = 0.99^30 * 100% =73.97%

这就带来了一个问题:一个公平博弈,如果策略不妥,那么长期下来有可能是必输。

为什么公平博弈,长期下来,最后“必输”?

举个抛硬币两次的例子:一共4个结果,赢赢、赢输、输赢、输输各占25%,那么本金分别是:121%、99%、99%、81%,其平均值(期望)仍然是100%。因此,虽然是公平博弈,但是长期下来,少数人大赚,多数人亏损,彩票化了。

注:该问题,与“一支股票经历10%涨停30次,10%跌停30次,最终价格如何”,实质是一样的。

一、算术原因

从算术角度来说,胜率必须略高于52.5%,长期才可以不输。以1000次为例:
1. 1 525 ∗ 0. 9 475 = 1. 1 50 ∗ 0.9 9 475 = 0.9916 ≈ 1 1.1^{525} * 0.9^{475} = 1.1^{50} * 0.99^{475} = 0.9916 \approx 1 1.15250.9475=1.1500.99475=0.99161
但是,根据大数理论,硬币实验次数越多,概率越趋近50%。当实验次数足够多时,胜率略高于52.5%的可能性变得微乎其微,对多数人而言,就必输了。

二、逻辑原因

从逻辑角度来说,落后之时减少投入,而领先之时增大投入,是不妥的。以起始10000为例:
1)先输后赢,则10000输1000,变成9000,再赢900,变为9900
2)先赢后输,则10000赢1000,变成11000,再输1100,变为9900

只有反过来,落后时增大投入,而领先时减少投入,才是合理的。比如:
1)先输后赢,10000变9000,增加投入1100,赢后变10100
2)先赢后输,10000变11000,减少投入900,输后变10100

然而,这种策略也存在两个问题:一是有点类似倍投法,假如一开始连输几次,有输光的风险;二是领先之时,资金大了,而每次投入要变少,资金利用率降低了。

三、Python改进

事实上,“每次拿出当前本金10%”的方案,不如“固定金额”方案。套用在购买基金的场景,前者类似“固定份额”定投方案,后者是“固定金额”定投方案。

现在试一试改进方案:
1)以某天净值x0为基准
2)当净值突破至下一个基准:上涨为x0的2倍,下跌为x0的一半,切换基准
3)当上一次操作之后,净值变化超过3%,则再次操作:如下跌,则补仓(倍数见下),如上涨且持有,则减仓(倍数见下,不足则清完为止)
4)当净值在[1, 2)倍x0时,倍数为1倍;净值在[0.9, 1)倍x0时,倍数为2倍;净值在[0.8, 0.9)倍x0时,倍数为3倍;…;净值在[0.5, 0.6)倍x0时,倍数为6倍。但是,如果当前持仓过多(大于等于该倍数的2倍),那么补仓倍数仅为1倍(减仓倍数不影响)

以下是该方案的Python源码,在Jupyter notebook里面分三段:

import requests
import time
import execjs

fileTest 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值