fanta
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
18、智能安全网络流量分配与输送机系统动态模型的研究与应用
本文探讨了智能安全网络流量分配系统与输送机系统动态模型的研究与应用。在网络流量分配方面,提出了基于模糊比较和决策模块的优化方法,有效提升了系统的安全性与稳定性;在输送机系统中,建立了非线性四阶微分方程模型并通过引入阻尼器项和轴向摩擦系数进行改进,实现了对平衡状态的描述与动态负载的模拟。研究还揭示了两者在技术方法上的相似性,并展望了跨领域融合的发展方向。原创 2025-07-15 12:04:23 · 12 阅读 · 0 评论 -
17、以太坊借贷与热技术网络流量智能分配系统解析
本文深入解析了以太坊借贷系统和热技术网络流量智能分配系统的技术原理与应用。以太坊借贷系统通过创新的利息支付机制和风险控制手段,有效应对贷款违约和汇率波动问题;而热技术网络流量智能分配系统则基于网状拓扑结构和智能流量预测模型,保障复杂工业环境下的稳定通信。文章还探讨了两者的优化方向与协同发展潜力,为金融和工业领域的数字化转型提供了重要参考。原创 2025-07-14 09:20:59 · 10 阅读 · 0 评论 -
16、基于智能合约的借贷违约最小化系统剖析
本文介绍了一种基于智能合约的借贷违约最小化系统,通过自动化流程、动态调整代币价值、借款人风险评估和利率调节等机制,有效降低加密货币借贷场景中的违约风险。该系统结合区块链技术,保障了借贷双方的利益安全,同时具备透明性和成本效益,适用于加密货币市场、扶贫贷款、中小企业融资等多个领域。原创 2025-07-13 10:58:48 · 11 阅读 · 0 评论 -
15、面部属性编辑与借贷风险防控的创新技术探索
本文探讨了面部属性编辑与区块链在贷款管理中的创新应用。针对面部属性编辑,提出了一种去重影扩散模型,通过差分激活有效去除编辑过程中产生的重影,同时保留图像细节,在FID和LPIPS指标上优于现有方法。此外,文章还介绍了一种基于以太坊区块链的贷款管理系统,利用智能合约和ERC-20代币作为抵押品,有效降低贷款违约风险,提升交易的安全性和可靠性。两种技术在各自领域展现出显著的创新价值,并提出了未来改进方向和广泛的应用前景。原创 2025-07-12 13:10:56 · 11 阅读 · 0 评论 -
14、利用集成机器学习方法与去重影扩散模型进行地理与面部图像分析
本文探讨了集成机器学习方法和去重影扩散模型在地理与面部图像分析中的应用。在地理预测方面,基于Biomod2平台的集成机器学习算法(包括GLM、GAM、GBM和RF)被用于博尔舍泽梅利斯卡亚苔原热喀斯特现象的时空预测,其中随机森林(RF)表现出最佳性能。同时,在面部属性编辑领域,提出了一种去重影扩散模型,相比传统GAN方法,其在去除重影的同时更好地保留了图像细节,并简化了训练过程。文章还展望了这两种技术在未来多个领域的应用潜力,如地质灾害预测和虚拟现实特效制作等。原创 2025-07-11 10:08:46 · 12 阅读 · 0 评论 -
13、利用集成机器学习方法预测热喀斯特过程
本研究利用集成机器学习方法对热喀斯特过程的发展动态进行预测,结合北极圈热喀斯特景观分布数据、WorldClim生物气候变量和SRTM数字高程模型等多源数据,采用随机森林(RF)、广义线性模型(GLM)等算法构建预测模型。研究结果揭示了自然因素如温度、降水和海拔对热喀斯特湖泊形成的关键影响,并通过集成学习显著提高了预测精度。该成果为生态保护与土地规划提供了科学依据,未来可结合更多数据和先进技术进一步提升预测能力。原创 2025-07-10 15:52:14 · 9 阅读 · 0 评论 -
12、利用神经网络与集成机器学习方法进行预测研究
本博文围绕两种预测方法展开,一是利用神经网络与Keras及Sklearn库对饱和蒸汽中钠浓度进行预测研究,通过数据读取、预处理、模型训练与评估等步骤发现逻辑回归模型准确率较低,并尝试使用LSTM神经网络提高预测性能;二是采用集成机器学习方法(包括GLM、GAM、GBM和RF)对热喀斯特过程的时空演变进行建模与预测,结合多源地理参考数据对未来20年热喀斯特发展进行可视化分析。文章对比了两种方法的技术要点、误差情况与改进方向,并展望了未来在数据质量、算法优化与应用场景拓展方面的提升空间。原创 2025-07-09 15:10:54 · 8 阅读 · 0 评论 -
11、容错算法效率评估与神经网络预测应用分析
本博客主要分析了容错算法在不同测试场景下的效率表现,并探讨了其适用范围,包括带宽限制、网络延迟以及数据包丢失/损坏对系统性能的影响。同时,博客研究了使用神经网络(尤其是LSTM)预测能源设施中饱和蒸汽钠浓度的潜力,展示了其在时间序列预测中的优势,并提出了降低误差的方法。最终展望了将容错算法与神经网络结合,在能源领域实现更高效、可靠运行的可能性。原创 2025-07-08 11:38:22 · 8 阅读 · 0 评论 -
10、分布式对等工作进程容错算法效率评估
本文对分布式对等工作进程的容错算法进行了实验性效率评估,重点分析了在不同网络不稳定因素下系统的性能表现。通过模拟带宽限制、延迟、数据包丢失和损坏等场景,确定了系统停止工作的阈值,并测量了有效负载执行间隔、操作持续时间以及与键值存储(etcd)交互的成本。实验结果揭示了网络因素对系统性能的显著影响,同时展示了系统在不同类型有效负载下的调度能力与容错表现。文章还提出了实际应用建议和未来研究方向,为分布式系统的设计与优化提供了参考依据。原创 2025-07-07 16:09:14 · 6 阅读 · 0 评论 -
9、基于Grover方法的量子算法优化
本博文详细探讨了基于Grover方法的量子算法优化,介绍了Grover算法在无序数据集中搜索特定元素的高效性。通过数学分析和具体示例,展示了其相较于经典算法在时间复杂度上的二次加速优势,并总结了该算法的操作步骤、性能特点及应用场景,包括数据库搜索、优化问题和密码分析等领域。同时讨论了Grover算法的概率性误差及其在实际应用中的改进方向,展望了量子计算技术的发展前景。原创 2025-07-06 13:33:17 · 6 阅读 · 0 评论 -
8、翻译过程的数学建模
本文介绍了一种基于集合论的翻译过程广义数学模型,形式化了应用语言学中的译者经验、专业化和能力等概念。模型涵盖了翻译任务复杂度估计、源文本预编辑、翻译生成、翻译质量评估与后期编辑等多个阶段,并通过数学公式和流程图详细描述了每个阶段的操作和决策逻辑。此外,还讨论了译者培训对翻译质量的影响,并展望了未来在机器翻译和自然语言处理领域的应用前景。原创 2025-07-05 13:56:53 · 9 阅读 · 0 评论 -
7、机器学习算法性能分析与翻译过程数学建模
本文探讨了机器学习算法在不同云平台上的性能分析以及翻译过程的数学建模与优化。首先比较了三大云平台上回归模型的性能,指出谷歌云平台略占优势,并提出了进一步研究的方向。随后详细阐述了机器翻译的质量问题及优化策略,通过数学建模对翻译过程进行了系统化描述,并引入文本属性、译者能力、翻译质量要求等关键要素。最后提出了前期编辑和后期编辑的具体方法,结合云平台选择,形成完整的翻译优化流程,为提升机器翻译质量提供了理论支持和实践指导。原创 2025-07-04 14:24:29 · 8 阅读 · 0 评论 -
6、机器学习算法性能分析与云平台对比
本文对多种机器学习算法在不同工具和数据集中的表现进行了详细分析,并比较了主流云平台(Azure、AWS 和 GCP)在运行线性回归模型时的性能。通过实验得出,GCP 在 R 平方值和误差指标方面表现更优,具有更好的模型拟合度和预测能力。研究还展望了未来可扩展的方向,包括更多类型模型的评估以及多云平台协同工作的潜力。原创 2025-07-03 14:35:48 · 8 阅读 · 0 评论 -
5、决策选择与云计算机器学习性能分析
本博客探讨了决策选择过程与量子力学中的波函数坍缩之间的形式类比,同时深入分析了在主流云计算平台(AWS、Azure和GCP)上运行的机器学习算法的性能表现。内容分为两个主要部分:第一部分将管理决策的选择过程与量子测量进行类比,提出决策者通过启发式方法实现替代方案缩减的过程,类似于波函数的坍缩;第二部分则基于UCI数据集,在三大云平台上构建并评估线性回归模型,从R平方值、均方误差、均方根误差和平均绝对误差等角度对比各平台的机器学习性能。博客旨在为复杂组织的技术决策提供理论支持,并为企业选择合适的云服务提供商提原创 2025-07-02 09:45:25 · 7 阅读 · 0 评论 -
4、视频图像修改检测与管理决策选择中的替代方案缩减
本文探讨了视频图像修改检测与管理决策选择中的替代方案缩减问题。在视频图像修改检测方面,采用基于ART-2m人工神经网络的分类器对VIFFD样本数据进行实验,比较了不同修改类型的检测效果,其中‘复制’修改检测表现最佳,而‘移除’修改检测效果较差,并分析了其原因及优化策略。在管理决策部分,基于不确定性关系和量子测量的类比,提出了替代方案缩减的优化方法,包括合理分配资源、多维度评估和团队决策等策略。通过优化检测和决策方法,提高视频分析和管理决策的效率和准确性。原创 2025-07-01 15:59:10 · 5 阅读 · 0 评论 -
3、机器学习与视频图像修改检测:技术融合助力医疗与数据安全
本文探讨了机器学习在医疗诊断和视频数据安全领域的应用。一方面,基于多种机器学习算法(如人工神经网络、随机森林等),实现了对肺部疾病的高效准确检测,准确率高达99%;另一方面,提出了一种基于自适应共振理论(ART-2m)的分类方法,用于检测视频图像的修改情况,通过构建帧序列噪声向量并结合分层记忆结构分类器,有效识别插入、删除、复制帧等修改行为。研究表明,这两种技术融合为医疗与数据安全领域带来了重要的应用前景和实际价值。原创 2025-06-30 10:53:08 · 7 阅读 · 0 评论 -
2、PACTDet:基于人工智能的肺部疾病检测方法
本研究提出了一种基于人工智能的肺部疾病检测方法——PACTDet,通过应用随机森林、决策树、支持向量机、梯度提升和人工神经网络(ANN)等多种机器学习算法,结合症状数据分析,实现了高效、准确的肺部疾病诊断。研究成果显示,ANN模型的准确率高达99%,为医疗工作者提供了快速且低成本的决策支持工具,有助于实现早期治疗并减轻重症监护压力。原创 2025-06-29 12:24:42 · 5 阅读 · 0 评论 -
1、基于模糊逻辑模型的多准则优化算法研究
本博文基于‘信息技术与智能决策系统’国际科学实践会议(ITIDMS 2022)的研究成果,探讨了模糊逻辑模型在多准则优化问题中的应用。研究以消防单位资源配置为背景,构建了多准则参数优化模型,并利用Sugeno模糊逻辑模型进行求解。通过实际案例分析展示了模糊逻辑处理模糊性和不确定性的优势,并总结了其在弱形成过程优化中的潜力及未来发展方向。原创 2025-06-28 12:33:50 · 5 阅读 · 0 评论