题目描述
原题链接
阶乘的和
问题描述
给定 n 个数 Ai,问能满足 m! 为 ∑=(Ai!) 的因数的最大的 m 是多少。其中 m! 表示 m 的阶乘,即 1×2×3×⋯×m。
输入格式
输入的第一行包含一个整数 n。
第二行包含 n 个整数,分别表示 Ai,相邻整数之间使用一个空格分隔。
输出格式
输出一行包含一个整数表示答案。
样例输入
3
2 2 2
样例输出
3
题目分析
要点1:阶乘之和的因数
n个不同的阶乘Ai 之和的最大因数(可写成m!)即为n个阶乘中的那个最小的阶乘。
例如,
3个阶乘: 2 ! 4 ! 3 ! 2! 4! 3! 2!4!3!
之和为 2 ∗ 1 + 4 ∗ 3 ∗ 2 ∗ 1 + 3 ∗ 2 ∗ 1 = 32 2*1+4*3*2*1+3*2*1=32 2∗1+4∗3∗2∗1+3∗2∗1=32,
能作其因数的阶乘的最大值即为 2 ! 2! 2!
因为,要想做阶乘之和的因数,则一定是各个阶乘的因数,则最大因数一定为最小的那个阶乘。
要点2:阶乘之和的转化
i + 1 i+1 i+1 个