动态规划DP 背包问题 完全背包问题(模型详解+例题应用:买书)

概览检索

动态规划DP 概览(点击链接跳转)
动态规划DP 背包问题 概览(点击链接跳转)在这里插入图片描述
完全背包模型详解(点击链接跳转)

完全背包问题模型

原题链接

AcWiing 3. 完全背包问题

题目描述

有 N种物品和一个容量是 V的背包,每种物品都有无限件可用
第 i种物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N行,每行两个整数 vi,wi,用空格隔开,分别表示第 i种物品的体积和价值。

输出格式
输出一个整数,表示最大价值。

数据范围
0<N,V≤1000
0<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

10

题目分析

完全背包:对于每个物品可以选0,1,2···个(无限件可用)。

闫氏DP分析法

在这里插入图片描述
f [ i , j ] f[i,j] f[i,j] 表示从1~i 个物品中选择且总体积不超过 j 的选法中价值最大的那个。

对于第i个物品,
可以选0个 i,即在 0~i -1 个物品中选择,体积不超过j,即 f [ i − 1 , j ] f[i-1,j] f[i1,j]
可以选1个 i,同时在 0~i -1 个物品中选择,体积不超过 j − v [ i ] j-v[i] jv[i],即 f [ i − 1 , j − v [ i ] ] + w [ i ] f[i-1,j-v[i]]+w[i] f[i1,jv[i]]+w[i]
···
可以选k个 i,同时在 0~i -1 个物品中选择,体积不超过 j − k × v [ i ] j-k \times v[i] jk×v[i],即 f [ i − 1 , j − k × v [ i ] ] + k × w [ i ] f[i-1,j-k \times v[i]]+k \times w[i] f[i1,jk×v[i]]+k×w[i]

其中,k的值由背包总容量决定,要保证 j ≥ k × v [ i ] j\geq k \times v[i] jk×v[i]
k = ⌊ j / v [ i ] ⌋ k=\lfloor j/v[i] \rfloor k=j/v[i]⌋

综上,
f [ i , j ] f[i,j] f[i,j] 即为上述所有结果的最大值。
f [ i , j ] = m a x ( f [ i − 1 , j ] , f [ i − 1 , j − k × v [ i ] ] + k × w [ i ] ) f[i,j]=max(f[i-1,j],f[i-1,j-k \times v[i]]+k \times w[i]) f[i,j]=max(f[i1,j],

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Geometry Fu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值