halcon学习和实践(第一个范例threshold.hdev)

本文介绍了通过Halcon的示例程序学习图像处理的方法,强调了理解解决问题的思路的重要性。作者详细解析了一个blob分析的案例,包括读取图像、图像增强、二值化、区域连接、形状筛选等步骤,并建议通过单步调试加深理解。这是一个适用于初学者的实用教程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】

        对于halcon学习,一个比较好的学习方法就是学习它的范例,效果虽然慢,但是作用是实实在在的。范例中不仅包含了很多的应用case,而且可以通过这些范例,可以学习问题解决的思路是什么样子的。只要有了这些思路,遇到问题的时候才不会那么慌张。

         打开halcon之后,只要输入ctrl+E,或者是依次输入文件-》浏览HDevelop示例程序,就可以看到对应的窗口,比如像这样,

        左边是各种各样分类的方法,右边是具体的案例。不失一般性,我们可以找一个blob分析,然后选择一个threashold.hdev的案例来进行分析,

         打开后似乎什么也没有,没关系,这个时候只需要单击上面的执行按钮就可以看到效果了,

         不出意外的话,你就会看到这样的执行结果,

         上面整个截图有四个部分,左上是一副图片,上面有几个彩色的部分,看上去所有的操作都是为了为了找到这几个彩色的连通区域;左下有很多小图片,看上去应该是执行过程中的中间结果;右上是查找执行函数使用的;右下是执行的脚本。我们可以进一步分析这个脚本是做什么的,

read_image (Audi2, 'audi2')
fill_interlace (Audi2, ImageFilled, 'odd')
threshold (ImageFilled, Region, 0, 90)
connection (Region, ConnectedRegions)
select_shape (ConnectedRegions, SelectedRegions, 'width', 'and', 30, 70)
select_shape (SelectedRegions, Letters, 'height', 'and', 60, 110)
dev_clear_window ()
dev_set_colored (12)
dev_display (ImageFilled)
dev_display (Letters)

         脚本内容看上去有点像python脚本,当然这不重要。第一行read_image,顾名思义,应该是读取图片;第二行fill_interlace,不太懂,暂且认为是图像增强的功能吧;第三行threshold,这个好理解,就是二值化;第四行connection,听名字好像是区域连接,姑且认为是分割吧;第五行和第六行是select_shape,两个函数一样,但是参数不一样,一个是width,一个是height,从字面上看,应该是从之前的分割区域中筛选出合适的区域。第七行dev_clear_window,从名字上看是清除窗口。第八行dev_set_colored,字面上看是设置颜色;第九行和第十行都是dev_display,很明显这是一个显示函数,只不过一个显示的是原图像,一个显示的是分割后的图像,两者叠加在一起。

        有了上面的分析,我们可以清楚的知道,这就是一个车牌识别的程序。

       也许 有的同学会说,能不能单步调试呢,其实这是完全可以的,也是比较推荐的调试方法,选择F2重新执行,

         接着就是单步执行,可以输入F6,或者是单击这个按钮,

         上面这些步骤,大家都可以在安装halcon之后,在自己的电脑上完成。学习图像固然需要花费一些时间,但是只要一步一步去做,总能学会的。

<think>嗯,用户想下载安装Halcon软件,运行示例程序threshold.hdev,并了解image、region、xld的数据结构区别。首先,我需要确认Halcon的下载安装步骤。记得Halcon官网需要注册账号,可能还需要许可证,所以得提醒用户注意这些点。安装过程一般比较简单,但可能需要配置环境变量或者安装运行时库,特别是如果用户使用Windows的话。 然后,运行示例程序threshold.hdev。用户可能需要指导如何在Halcon中打开运行程序。通常Halcon安装后自带示例,用户可以在安装目录下找到,比如在examples目录里。操作步骤大概包括启动HDevelop,打开示例文件,然后逐步执行。可能需要提醒用户注意图像路径是否正确,或者是否需要加载示例图像。 接下来是数据结构对比。image存储像素数据,比如灰度或彩色图像,每个像素有坐标值。region是二值区域,用行列坐标表示的区域,可能用游程编码存储。XLD(eXtended Line Description)是亚像素精度的轮廓,包括多边形或曲线。需要制作一个表格,比较它们的存储内容、精度、操作方法典型应用场景。 用户可能还希望知道这些数据结构在具体操作中的区别,比如如何从image生成region,或者如何从region提取XLD。比如阈值处理得到region,边缘检测得到XLD。操作方法部分,image可能涉及滤波、变换,region有形态学操作,XLD有拟合、测量等。 需要确保回答的结构清晰,分步骤说明安装运行示例,然后表格对比数据结构。可能还需要检查用户是否有权限下载Halcon,是否需要商业许可,但通常示例程序可能可以在试用版运行。另外,示例程序threshold.hdev的具体步骤可能需要更详细说明,比如如何单步执行代码,查看结果窗口中的region变化。</think>### Halcon软件下载与安装教程 1. **下载步骤** - 访问[MVTec官网](https://www.mvtec.com),注册/登录账户 - 选择"Downloads"→"HALCON"→填写申请表格(需企业邮箱或学术邮箱) - 选择对应版本(建议下载最新稳定版,如HALCON 23.05)[^2] 2. **安装流程** ```bash # Windows系统双击.exe文件,按向导完成安装 # Linux系统执行安装脚本:sudo sh halcon-23.05-linux.tar.gz ``` - 安装时需勾选"Runtime Environment""Development Environment" - 安装完成后运行`hdevelop`命令验证是否成功 --- ### 运行示例程序threshold.hdev步骤 1. **启动HDevelop** - Windows:开始菜单→MVTec→HALCONHDevelop - Linux:终端输入`hdevelop` 2. **加载示例程序** ```python File → Open Program → 路径:%HALCONEXAMPLES%/hdevelop/Threshold/threshold.hdev ``` 3. **执行程序** - `F5`单步执行,观察变量窗口图形窗口变化 - 关键操作节点: ```python read_image(Image,'fabrik') # 加载示例图像 threshold(Image,Region,128,255) # 阈值分割生成Region connection(Region,ConnectedRegions) # 区域连通性分析 ``` --- ### Halcon数据结构对比表 | 类型 | 存储内容 | 精度 | 操作方法 | 典型应用场景 | |----------|-----------------------------------|------------|---------------------------|-----------------------| | **Image**| 像素矩阵(灰度/彩色/多通道) | 像素级 | 滤波/变换/直方图运算 | 图像预处理 | | **Region**| 二值区域(行列坐标集合) | 像素级 | 形态学操作/区域合并 | 目标定位/阈值分割 | | **XLD** | 亚像素轮廓(多边形/曲线参数) | 亚像素级 | 轮廓拟合/几何测量 | 高精度测量/边缘检测 | --- ### 关键操作说明 1. **Image** - 通过`read_image`加载图像,支持PNG/TIFF等格式 - 使用`rgb1_to_gray`进行色彩空间转换[^3] 2. **Region** - 由`threshold`或`connection`生成 - 通过`select_shape`筛选特定几何特征区域 3. **XLD** - 通过`edges_sub_pix`提取亚像素边缘 - 使用`fit_circle_contour_xld`进行几何形状拟合 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵌入式-老费

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值