鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
YOLOv8改进 | 注意力机制 | 添加iRMB倒置残差块注意力机制(轻量化注意力机制)
1. 简介
iRMB注意力机制是一种轻量化的注意力机制,它通过将倒置残差块与注意力模块相结合来提升模型性能,同时降低计算复杂度。该机制已被证明能够有效地提高YOLOv8目标检测模型的精度,尤其是在小目标检测方面。
2. 原理详解
iRMB注意力机制主要包含以下两个部分:
-
倒置残差块: 倒置残差块将激活函数和批标准化层放在卷积层之后,可以提升梯度流动,使模型更容易训练。
-
注意力模块: 注意力模块可以学习特征之间的依赖关系,并放大重要的特征信息,抑制无关信息。iRMB注意力机制使用空间注意力和通道注意力来增强特征表示。
3. 应用场景解释
iRMB注意力机制适用于以下场景:
-
目标检测: 提高目标检测的准确性,尤其是在小目标检测方面。
-
图像分割: 增强图像分割的语义理解能力,提高分割精度。
-
其他