鱼弦
【gzh:红尘灯塔,CSDN(博客专家、内容合伙人、新星导师、全栈领域优质创作者)
,51CTO(Top红人+专家博主),华为云·云享专家...
】
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
行人重识别 - 使用Triplet Loss和Siamese网络
行人重识别(Person Re-Identification, Re-ID)是计算机视觉领域的一项关键任务,目标是在不同的视角、场景或时间条件下识别同一行人。通常应用于监控系统、公共安全等领域。使用Triplet Loss和Siamese网络进行行人重识别是一种有效的方法,通过调整训练策略和网络结构,我们可以进一步提高模型精度。原创 2025-07-22 09:11:03 · 564 阅读 · 0 评论 -
基于PyTorch的LSTM实现文本匹配任务
文本匹配任务旨在判断两个文本序列之间的相似程度,广泛应用于问答系统、信息检索、机器翻译等领域。长短期记忆网络(LSTM)是一种改进的递归神经网络(RNN),擅长处理和预测时间序列数据,适用于文本匹配任务中的序列建模。使用LSTM进行文本匹配能够有效捕获序列间的复杂关系,是一种强大的自然语言处理方法。本文展示了如何通过PyTorch实现一个简单的LSTM文本匹配模型。原创 2025-07-21 09:26:33 · 938 阅读 · 0 评论 -
FEAD:fNIRS-EEG情感数据库(视频刺激)
FEAD 是一个强大的情感数据库,结合 fNIRS 和 EEG 技术,为多种情感计算和神经科学研究提供了宝贵的数据资源。其应用范围广泛,包括情感计算、脑机接口、心理学研究和医疗诊断。通过合理的数据预处理、特征提取和分类器训练,可以实现高效的情感识别。原创 2025-07-15 18:48:33 · 689 阅读 · 0 评论 -
颜色化黑白图像:使用CNN或GAN模型
图像颜色化是指将灰度图像自动转换成彩色图像。它在修复旧照片、增强图像细节以及提高用户体验方面有广泛应用。图像颜色化结合了深度学习技术与计算机视觉,为复原历史图像和提升艺术表达提供了强大的工具。随着深度学习技术的发展,颜色化技术未来将更加精准和高效。原创 2025-07-10 14:44:52 · 707 阅读 · 0 评论 -
【PyTorch】CNN(一维卷积Conv1D)实现时间序列预测
本文介绍了一维卷积神经网络(Conv1D)在时间序列预测中的应用,展示了其基本原理及实现方式。通过合适的数据预处理和模型调参,Conv1D可以有效地捕捉时间序列数据中的模式,从而进行精准预测。原创 2025-07-09 15:10:14 · 690 阅读 · 0 评论 -
蛋白质结构预测 - 使用AlphaFold在CASP数据集上进行蛋白质结构预测
摘要:本文介绍了蛋白质结构预测工具AlphaFold的原理及应用。该深度学习算法通过分析蛋白质序列和进化数据,利用神经网络和图卷积网络预测三维结构,在CASP竞赛中表现优异。文章详细说明了AlphaFold的工作流程,包括序列比对、神经网络建模和结构优化步骤,并提供了简化的代码示例。AlphaFold在药物设计、基因组注释、酶工程和生物材料开发等领域有广泛应用前景。尽管已取得显著进展,蛋白质动态结构预测等挑战仍需解决。未来随着算法改进,该技术有望在疾病研究和个性化医疗中发挥更大作用。原创 2025-06-28 08:58:47 · 725 阅读 · 0 评论 -
深度学习中的迁移学习:使用预训练模型进行图像分类
摘要:迁移学习利用预训练模型(如VGG、ResNet)将已有知识迁移到新任务,显著减少训练时间和资源。文章介绍了其在医学影像、自动驾驶、安防监控和农业等领域的应用,并提供了相关代码示例。实现步骤包括数据准备、模型选择、特征提取/微调、训练和评估。深度学习框架如TensorFlow和PyTorch简化了迁移学习的实现。该方法可部署在云端、边缘设备等环境,有效解决小数据集问题。未来随着更多预训练模型的出现,迁移学习将在各领域发挥更大作用。原创 2025-06-27 14:08:59 · 828 阅读 · 0 评论 -
文字检测与识别:EAST和CRNN模型在ICDAR数据集上进行文字检测与识别任务
本文介绍了基于EAST和CRNN模型的中文文字检测与识别技术。EAST模型用于高效准确地检测文字区域,通过全卷积网络和多通道预测直接输出文字几何形状;CRNN模型则结合CNN和RNN进行序列化文本识别。文章展示了该技术在文档数字化、自动驾驶、翻译应用等场景的实际应用,并提供了Python代码示例。同时探讨了未来发展方向,包括处理多语言、手写文本等复杂场景的优化算法。该技术组合在ICDAR数据集上表现出色,为计算机视觉领域的文字识别任务提供了有效解决方案。原创 2025-06-26 14:03:02 · 515 阅读 · 0 评论 -
人类行为识别:利用I3D和C3D模型在HMDB51数据集上的应用
人类行为识别技术应用与实现 本文介绍了基于I3D和C3D模型的人类行为识别技术在HMDB51数据集上的应用。该技术通过3D卷积网络分析视频序列中的时空特征,实现精确的行为分类。主要应用场景包括安防监控、体育分析、医疗康复和人机交互。文章还提供了多个Python代码示例,展示如何使用OpenCV、YOLO、MediaPipe等工具实现实时行为检测,并给出PyTorch框架下C3D模型的实现代码。这些技术方案可广泛应用于智能监控、运动训练、康复治疗和智能交互系统等领域,为开发实际应用系统提供了基础实现参考。原创 2025-06-25 09:07:07 · 577 阅读 · 0 评论 -
基于CharCNN实现中文情感分类任务
摘要 字符级卷积神经网络(CharCNN)通过直接处理文本字符实现中文情感分类,克服了传统词级模型处理未登录词的局限。该方法在社交媒体监控、客户反馈分析和舆情分析等场景有广泛应用,如分析微博评论、产品评价和新闻情感倾向。技术实现上,CharCNN通过字符嵌入、卷积层特征提取、池化降维和全连接分类等步骤,最终输出情感类别。文中提供了基于Python和PyTorch的完整实现代码,包括数据预处理、模型构建及训练测试流程,展示了从原始文本到情感分类的完整解决方案。实验结果表明该方法能有效识别中文文本的情感极性。原创 2025-06-24 17:42:16 · 633 阅读 · 0 评论 -
【PyTorch】LSTM 实现时间序列预测
本文介绍了LSTM(长短期记忆网络)在时间序列预测中的应用。LSTM是一种特殊的循环神经网络,能够有效处理长时依赖关系,解决传统RNN的梯度消失问题。文章展示了四个典型应用场景:股票价格预测(使用TensorFlow/Keras实现)、天气预报(使用线性回归)、交通流量预测(使用决策树回归)和电力负荷预测(使用随机森林回归)。每个场景都提供了完整的Python代码示例。文中还解释了LSTM的工作原理,包括输入门、遗忘门和输出门的机制,以及细胞状态如何维护长期记忆。通过PyTorch实现LSTM模型的代码示例原创 2025-06-23 09:12:12 · 518 阅读 · 0 评论 -
深度学习姿态迁移 - 使用PoseGAN在DeepFashion数据集上进行姿态迁移任务
摘要:本文探讨了基于PoseGAN的深度学习姿态迁移技术在DeepFashion数据集上的应用。通过生成对抗网络架构,该技术可实现人物图像姿态转换,同时保持原人物特征。文章详细介绍了PoseGAN的算法原理,包括姿态估计和图像生成两阶段流程,并提供了四个具体应用场景的实现代码:虚拟试衣(使用OpenCV姿态检测)、游戏动画制作(Blender脚本)、健身姿态分析(MediaPipe)和智能监控行为识别(Keras模型)。这些应用展现了该技术在电商、娱乐、健康和安防等领域的潜在价值。原创 2025-06-22 14:10:45 · 427 阅读 · 0 评论 -
情感分析:LSTM和Transformer模型在Twitter数据集上的应用
LSTM和Transformer模型在情感分析领域表现出了强大的能力,通过对Twitter推文的情感分析,我们能够更好地理解用户心态和市场趋势。虽然这两种模型各有优劣,但Transformer由于其效率和可扩展性正在成为主流选择。原创 2025-06-21 12:30:00 · 490 阅读 · 0 评论 -
基于UNet对DRIVE视网膜进行图像分割
UNet凭借其强大的图像分割能力,在医学影像分析领域取得了良好的表现。结合DRIVE数据集,可以轻松实现视网膜血管的自动化分割。原创 2025-06-12 19:40:51 · 744 阅读 · 0 评论 -
基于随机森林算法的空气质量污染预测
尽管实际应用中需要处理更复杂的数据、进行模型调优和应对时间序列特有的挑战,但理解本示例中的基本流程和原理,为构建更高级的空气质量预测系统奠定了基础。如果是分类问题,将所有树的预测类别进行投票,得票最多的类别为最终预测结果。机器学习方法,特别是像随机森林这样的集成模型,通过从大量的历史数据中学习模式,能够更好地处理多源异构数据,捕捉特征之间的复杂交互,从而提高预测的准确性。在实际应用中,当有新的实时气象数据或未来的气象预报时,进行同样的预处理后,输入到训练好的模型中,即可获得预测结果。原创 2025-06-02 15:53:11 · 895 阅读 · 0 评论 -
图像超分辨率:使用 SRCNN 和 ESPCN 模型在 DIV2K 数据集上实现
在图像超分辨率任务中,SRCNN和ESPCN模型提供了有效的方法来提高图像质量。它们通过不同的机制在准确性和效率之间取得平衡,是许多实际应用的核心技术。原创 2025-05-06 18:00:00 · 539 阅读 · 0 评论 -
告别“追涨杀跌”!手把手教你用 PyTorch LSTM 构建预测模型,提升投资胜率
股票价格预测一直是金融领域极具挑战性的问题。股票市场受到多种复杂因素的影响,包括经济指标、公司业绩、市场情绪、政治事件等,导致其价格波动呈现出高度非线性、非平稳的特性。传统的统计方法在捕捉这些复杂模式方面存在局限性。深度学习,特别是循环神经网络(RNN)及其变体长短期记忆网络(LSTM),因其在处理序列数据方面的优势,被广泛应用于时间序列预测任务,包括股票价格预测。本文将详细介绍如何利用 PyTorch 构建和训练 LSTM 模型来实现股票预测分析。原创 2025-05-06 09:16:28 · 665 阅读 · 0 评论 -
图像去噪 - 使用自编码器或GAN模型
自编码器是一种神经网络结构,通常用于无监督学习,用于特征提取或降维。其基本思想是将输入数据压缩成一个低维的"瓶颈",然后再尝试从该低维表示重建原始输入。使用自编码器和GAN模型进行图像去噪具有强大的潜力,可以有效去除噪声并保留细节。自编码器简单而有效,而GAN在处理复杂结构及纹理方面表现出色。原创 2025-04-14 18:00:00 · 496 阅读 · 0 评论 -
语音合成:在LJSpeech数据集上使用WaveNet和Tacotron 2
语音合成是一种将文字转化为自然语音的技术。在这方面,WaveNet和Tacotron 2是两种广泛使用的模型。WaveNet和Tacotron 2作为语音合成领域的杰出模型,极大提升了生成语音的自然度和质量。然而,它们需要大量计算资源,在实时性和效率方面仍有优化空间。原创 2025-04-09 18:00:00 · 1201 阅读 · 0 评论 -
【Pytorch】基于Pytorch+Bert实现电商情感多分类任务
本文介绍了基于Pytorch和BERT实现电商情感多分类任务的方法。从实际应用场景入手,详细解释了算法原理,并提供了完整的代码示例。通过这种方法,我们能够快速有效地对电商用户的评论进行情感分类,为业务决策提供支持。原创 2025-03-16 18:00:00 · 722 阅读 · 0 评论 -
YOLOv8 改进:添加 DCNv3 可变形卷积
通过在 YOLOv8 中集成 DCNv3,可以有效提升模型在处理复杂场景及目标检测任务中的鲁棒性。尽管可能会引入额外的计算开销,但其带来的检测精度提升可在许多应用中证明其价值。原创 2025-03-14 13:30:00 · 696 阅读 · 0 评论 -
【基于PyTorch】多项式贝叶斯分类器实现中文文本情感分类任务
多项式朴素贝叶斯(Multinomial Naive Bayes, MultinomialNB)是一种常用于文本分类的算法,特别适用于多类别文本分类。其在处理离散数据(如文本数据中的词频)时表现优异,可以用于情感分析、垃圾邮件检测等任务。多项式朴素贝叶斯分类器是一种简单但功能强大的文本分类工具,在处理中文文本情感分析任务中表现尤为出色。通过适当的文本预处理和特征提取技术,可以实现高效的情感分类效果。原创 2025-03-11 13:30:00 · 953 阅读 · 0 评论 -
使用PyTorch实现验证码识别
验证码(CAPTCHA)用于区分人类用户和自动程序,是一种常见的安全机制。随着深度学习技术的发展,自动化破解验证码成为可能。PyTorch作为一个灵活高效的深度学习框架,非常适合实现验证码识别任务。验证码识别是一个典型的应用场景,结合CNN、RNN及CTC损失,可以有效地从复杂图像中识别字符序列。使用PyTorch实现不仅简洁,还能利用其强大的生态系统。原创 2025-03-10 13:30:00 · 611 阅读 · 0 评论 -
基于Pytorch的语音情感识别系统
基于Pytorch的语音情感识别系统利用深度学习技术,通过训练神经网络模型,对语音信号中的情感状态进行识别。这类系统具备广泛的应用场景,从客户服务到心理健康监测,都能发挥重要作用。原创 2025-03-09 13:00:00 · 981 阅读 · 0 评论 -
基于TextRNN实现情感短文本分类任务
基于TextRNN的情感短文本分类模型能够有效地捕捉句子中的时序依赖关系,从而实现较高的分类准确率。通过合适的数据预处理和模型训练,可以在各种应用场景中推广和使用。原创 2025-03-07 18:00:00 · 640 阅读 · 0 评论 -
基于GPT2实现中文新闻文本分类任务
基于GPT-2的中文新闻文本分类利用了强大的预训练语言模型,从输入文本中提取丰富的特征,并通过分类器进行类别预测。该方法在实际应用中表现出色,适用于多种场景。原创 2025-03-02 18:00:00 · 721 阅读 · 0 评论 -
【全网独家】DeepSeek 核心功能(机器翻译 -多语言数据处理 - 模型训练与评估)
机器翻译是将源语言(如中文)的文本自动翻译成目标语言(如英文)的文本。将中文翻译成英文,或将英文翻译成中文。支持多种语言之间的翻译(如英法、英德等)。跨语言沟通(如邮件、聊天)文档翻译实时翻译(如会议、旅游)多语言内容生成DeepSeek 在机器翻译任务中表现出色,其动态稀疏注意力机制能够有效处理多语言数据。通过预训练模型和微调,可以快速实现高性能的机器翻译应用。原创 2025-02-14 09:13:30 · 1433 阅读 · 0 评论 -
【全网独家】deepseek 安装与配置(基础入门)
硬件要求:处理器:建议使用多核高性能CPU,如英特尔酷睿i7及以上系列或AMD锐龙同等性能处理器。原创 2025-02-11 16:10:59 · 2897 阅读 · 0 评论 -
【全网独家】DeepSeek 数据导入
DeepSeek 提供了灵活的数据导入方式,支持多种数据格式和来源。通过结合先进的 NLP 模型和高效的数据处理流程,DeepSeek 能够快速适应不同的应用场景,并提供高性能的文本处理能力。原创 2025-02-11 21:15:00 · 1586 阅读 · 0 评论 -
【全网独家】DeepSeek 模型架构(Transformer架构详解+DeepSeek编码器-解码器结构+动态稀疏注意力机制)
DeepSeek 通过引入动态稀疏注意力机制,显著提高了 Transformer 模型在处理长序列数据时的效率。其编码器-解码器结构和多头注意力机制使其在多种 NLP 任务中表现出色。原创 2025-02-12 13:45:00 · 1800 阅读 · 0 评论 -
【全网独家】DeepSeek 入门介绍(终极详解)
DeepSeek 是一种基于深度学习的搜索引擎,旨在通过学习用户的查询意图和内容特征,提供更为精准的搜索结果。它主要应用于文本检索、推荐系统和语义搜索等领域。DeepSeek 在硬件配置、技术创新、训练流程和推理能力上具有明显优势,尤其在资源使用和实时性方面表现出色。通过蒸馏技术和增量训练等创新,它能够在保持高准确率的同时,降低资源消耗,适应多种应用场景。与主流大语言模型相比,DeepSeek 在特定场景下展现出良好的性能和适用性,尤其是在信息检索和个性化推荐方面。原创 2025-02-11 10:15:05 · 1165 阅读 · 0 评论 -
【全网独家】DeepSeek 核心功能(文本生成 - 数据准备与预处理 - 模型训练与推理)
文本生成是指根据输入(如提示、上下文或其他文本)生成新的文本。根据新闻内容生成标题。将一种语言的文本翻译成另一种语言。生成对话回复。根据提示生成连贯的故事。新闻摘要和标题生成聊天机器人内容创作(如广告文案、故事创作)代码生成机器翻译DeepSeek 在文本生成任务中表现出色,其动态稀疏注意力机制能够有效处理长文本数据。通过预训练模型和微调,可以快速实现高性能的文本生成应用。原创 2025-02-13 07:00:00 · 492 阅读 · 0 评论 -
【全网独家】DeepSeek 核心功能(文本分类 - 数据准备与预处理 - 模型训练与评估 - 情感分析)
文本分类是将一段文本分配到一个或多个预定义类别的任务。将文本分类为“正面”、“负面”或“中性”。将邮件分类为“垃圾邮件”或“正常邮件”。将新闻文章分类为“体育”、“科技”、“政治”等。情感分析(如产品评论、社交媒体分析)垃圾邮件过滤新闻分类意图识别(如聊天机器人)文档分类DeepSeek 在文本分类任务中表现出色,其动态稀疏注意力机制能够有效处理长文本数据。通过预训练模型和微调,可以快速实现高性能的文本分类应用。原创 2025-02-13 00:00:00 · 1924 阅读 · 0 评论 -
基于MTL的多任务视频推荐系统
基于MTL的多任务视频推荐系统通过利用多个相关任务之间的共享信息,有效提升了推荐质量。它不仅提升了单一任务的性能,还提高了系统的整体协调性和用户体验。未来,随着深度学习和大数据技术的发展,MTL将在更多场景中得到应用。原创 2025-02-11 18:00:00 · 678 阅读 · 0 评论 -
基于MediaPipe实现人脸五官定位检测
基于MediaPipe实现人脸五官定位检测具有高效、易用、跨平台的特性,可以广泛应用于人脸识别、表情识别、增强现实等领域。通过简单的Python代码即可实现实时检测,为各种应用场景提供了强大的支持。原创 2025-02-10 18:00:00 · 573 阅读 · 0 评论 -
用 Python 和 TensorFlow 实现目标检测
目标检测是一类计算机视觉任务,旨在识别和定位图像或视频中对象的实例。与图像分类不同,目标检测不仅要确定图像中是否存在某种类型的对象,还需要提供每个对象的位置信息(通常是边界框)。目标检测在许多领域都有重要应用,是计算机视觉中的关键任务。随着深度学习技术的发展,目标检测算法的精度和速度不断提高。原创 2025-02-08 18:00:00 · 890 阅读 · 0 评论 -
中文文本分类中的深度学习
中文文本分类在自然语言处理中具有广泛的应用。深度学习模型,特别是像BERT这样的预训练Transformer模型,在这一领域表现出色,能够捕获复杂的语义信息。结合合适的数据集和有效的训练策略,可以达到高水平的准确率。原创 2025-02-07 18:00:00 · 405 阅读 · 0 评论 -
机器学习之实战篇——图像压缩(K-means聚类算法)
K-means聚类算法在图像压缩领域具有良好的表现,通过将图像像素聚类为少量的颜色,能够显著压缩图像大小,同时保持较高的视觉质量。这一技术在存储、传输和处理图像时具有广泛的应用前景。原创 2025-02-06 18:00:00 · 461 阅读 · 0 评论 -
基于TextCNN的情感分析任务
TextCNN由于其结构简洁且高效,已经成为文本分类的常用方法之一。本文介绍了TextCNN的基本原理及其应用场景,并提供了详细的代码示例,展示如何利用TextCNN进行情感分析。原创 2025-02-04 18:00:00 · 438 阅读 · 0 评论 -
基于GAN生成动漫人物图像
基于GAN生成动漫人物图像是一项具有广泛应用前景的技术,通过对抗训练,生成器和判别器不断提升,在多种场景下创造逼真的图像。原创 2025-02-03 18:00:00 · 531 阅读 · 0 评论