背景
一般大家写cuda代码用到流的情况不多,很多使用简单的使用默认流就行,但是对于某些应用使用多流比较合适:
- 需要平凡调用很多kernel,但是每个kernel只能使用一点gpu资源的时候
- 当一些数据copy可以和计算重叠时候
对于kernel并行的基础知识可以参考这里, 在文章的结尾简单解释一下默认流的问题,当时为了避免同步的影响,引入了cudaStreamNonBlocking,最近在看一些框架发现原来有更好的解决方式,下面对这个知识点进行一个简单的总结。
默认流
nvidia的默认流有两种:
- legacy(传统的或者停产的)
- per-thread
legacy
legacy是一个隐式流(也就说kernel launch的时候不用写)会自动同步一个CUcontext(如果只是使用runtime api的话,每个设备会有一个context)中的所有非non-blocking流,显示用的话可以把cudaStreamLegacy传给kernel调用。
demo
const int N = 1 << 20;
__global__ void kernel(float *x, int n)
{
int tid = threadIdx.x + blockIdx.x * blockDim.x;
for (int i = tid; i < n; i += blockDim.x * gridDim.x) {
x[i] = sqrt(pow(3.14159,i));
}
}
int main()
{
const int num_streams = 8;
cudaStream_t streams[num_streams];
float *data[num_streams];
for (int i = 0; i < num_streams; i++) {
cudaStreamCreate(&streams[i]);
cudaMalloc(&data[i