Linux中Python应用CPU占用高问题排查

本文记录了公司购买的外部供应商提供的呼叫中心系统在运行过程中出现LOAD和CPU占用偏高的问题排查过程。通过top、ps、watch、pstack和strace等命令定位到python应用中的数据库读取操作为瓶颈,并通过检查MySql慢日志确认问题根源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

公司购买了一套由外部供应商提供的呼叫中心系统,在使用的过程中发现其LOAD和CPU占用偏高,由于没有源代码也不太清楚其内部的实现逻辑,只能够通过观察系统资源的消耗来排除其问题,以下记录的是问题排查的过程。

1、通过top命令查看其CPU占用

可以看到其load占用为“20.14, 16.42, 19.16”,三个数字分别表示cpu在1分钟、5分钟及15分钟的load,cpu的使用率也偏高,达到了68.8%,占用cpu较高的进程ID为281020。

2、通过ps查看该应用

$ ps aux|grep 281020
root     212891  0.0  0.0 103328   848 pts/3    S+   15:41   0:00 grep 281020
ipcc     281020 39.5  2.6 1025560 425540 ?      Sl   01:18 341:29 /usr/bin/python ./ctiRealtimeCdrMain.py default.xml

结果显示该应用为python应用。

3、查看进程中线程的CPU占用情况

top中加入-H参数,查看该进程中线程的cpu战胜情况:

$ top -H -p 281020

结果如下:

可以看到进程281020中线程号为281042的线程战胜的CPU最多。

4、跟踪进程的执行栈

通过watchpstack命令查看线程中命令的执行情况:

watch pstack 281042

可以看到从mysql中读取数据占用资源较多。

5、跟踪函数的调用

进一步通过strace命令进行验证:

$ strace -f -p 281042

结果如下:

其中大量的数据在执行数据库的写入(write)及读取(read)操作,上面的pstack命令并没有反映出write的问题,那问题应该出现在数据库的read操作上,初步猜测是数据库的select语句有问题,或者是没有走索引。

6、检查MySql的慢日志

进一步检查MySql的慢日志发现:

其中有大量的查询慢日志,SQL中使用了全表扫描的count、max、min这样的函数,终于确认问题造成的原因了,余下的就是让对方对做优化了。

<think>首先,用户的问题是关于Linux系统中整体CPU使用率低但单个核心使用率的情况。用户提供了几个引用,我需要参考这些引用来构建回答。 关键引用: - 引用[1]:显示了系统CPU使用率较,用户CPU为84.1%,系统CPU为13.3%,空闲CPU只有1.4%。这表明整体CPU使用率。 - 引用[2]:解释了CPU使用率的计算方式,基于间隔时间的差值。 - 引用[3]:讨论了CPU调度公平性,以及如何调整进程优先级。 - 引用[4]:提供了编程获取CPU使用率的代码示例,包括用户态和系统态的使用率计算。 用户的问题焦点是:整体CPU使用率低但单个核心使用率。这暗示整体平均使用率不,但某个核心的负载很。 我需要构建一个结构清晰的回答,帮助用户逐步解决问题。回答应该真实可靠,基于Linux系统知识。 ### 回答结构: 1. **解释现象**:先描述用户描述的情况,即整体CPU使用率低但单个核心使用率。 2. **可能原因**:列出可能导致这种情况的原因。 3. **诊断方法**:提供如何诊断问题的步骤,使用工具如top、htop、mpstat等。 4. **解决方法**:基于原因,给出可能的解决方案。 5. **相关问题**:在末尾生成相关问题,以扩展讨论。 ### 可能原因: - **单线程应用**:如果一个应用程序是单线程的,它只能在一个核心上运行,导致该核心使用率,而其他核心空闲。 - **CPU亲和性**:进程可能被绑定到特定核心(通过taskset或cgroups),导致该核心负载。 - **中断或软中断**:硬件中断或软中断可能集中在某个核心上,比如网络或磁盘I/O。 - **调度器问题**:Linux调度器可能没有正确平衡负载。 - **NUMA架构**:在NUMA系统中,内存访问可能导致某些核心更忙。 - **内核bug或配置**:特定内核版本或配置可能导致负载不平衡。 ### 诊断方法: - 使用`top`命令,按1查看每个核心的使用率。 - 使用`mpstat -P ALL 1`实时监控每个核心的使用率。 - 使用`pidstat -u -p <PID> 1`检查特定进程的CPU使用。 - 检查中断平衡:`cat /proc/interrupts` 和 `cat /proc/softirqs`。 - 使用`perf`或`strace`分析进程行为。 ### 解决方法: - 优化应用程序:使用多线程或并行化。 - 调整CPU亲和性:使用`taskset`或`cgroups`将进程分散到多个核心。 - 中断平衡:使用`irqbalance`服务或手动设置中断亲和性。 - 调整调度器参数:如使用CFS调度器调整。 - 升级内核或应用补丁。 现在,生成相关问题: 1. 如何监控Linux系统中的每个CPU核心使用率? 2. 什么是CPU亲和性,如何设置? 3. 如何优化单线程应用以减少CPU瓶颈? 4. Linux中断处理机制如何影响CPU使用率? 确保回答使用中文,并遵循系统指令: - 行内数学表达式用$...$,但这个问题可能不涉及数学。 - 独立公式用$$...$$,但可能不需要。 - LaTeX语法正确。 - 添加引用标识在段落末尾。 引用用户提供的引用: - 引用[1]:整体CPU使用率,但用户的问题相反。 - 引用[2]:CPU使用率计算。 - 引用[3]:CPU优先级调整。 - 引用[4]:CPU使用率计算代码。 在回答中,我可以引用这些来解释概念。</think>### Linux系统整体CPU使用率低但单个核心使用率的原因及解决方法 在Linux系统中,整体CPU使用率表示所有CPU核心的平均利用率,而单个核心使用率但整体低的情况,通常表明负载分布不均。这可能导致性能瓶颈,因为部分核心过载而其他核心空闲。以下我将逐步解释原因、诊断方法和解决策略,确保回答基于Linux系统原理和实际经验。 #### 1. **现象解释** - **整体CPU使用率低**:根据引用[2],CPU使用率是通过间隔时间(如3秒)的差值计算的平均值,公式为: $$ \text{CPU使用率} = \left(1 - \frac{\text{空闲时间}}{\text{总时间}}\right) \times 100\% $$ 如果整体使用率低(例如低于30%),说明系统资源总体充足。 - **单个核心使用率**:某个核心的利用率可能接近100%,而其他核心空闲。这常见于多核系统中,引用[3]提到Linux内核默认公平调度任务,但某些因素可能导致负载集中在一个核心上[^3]。 #### 2. **可能原因** 导致这种不平衡的原因主要包括: - **单线程应用程序**:如果一个应用是单线程的(如某些Python脚本或遗留软件),它只能在一个核心上运行,导致该核心满载,而其他核心闲置。例如,一个计算密集型任务(如视频编码)可能绑定到特定核心。 - **CPU亲和性设置**:进程可能通过`taskset`或cgroups被绑定到特定核心(称为CPU亲和性),导致该核心始终负载。引用[3]指出,用户或系统管理员可以手动调整进程优先级或亲和性来影响调度[^3]。 - **中断或软中断不均衡**:硬件中断(如网络或磁盘I/O)可能集中在某个核心。引用[4]中代码显示,系统CPU使用率(pct_syst)包括中断处理时间,如果中断绑定到单一核心,会推其使用率[^4]。 - **调度器问题**:Linux的CFS(Completely Fair Scheduler)在负载平衡时可能出现异常,尤其是在NUMA架构系统中,内存访问局部性导致某些核心更忙。 - **内核或驱动bug**:特定内核版本或驱动程序可能存在bug,导致任务无法有效迁移到空闲核心。 - **资源争用**:如锁竞争或缓存未命中,可能导致任务在某个核心上“卡住”。 #### 3. **诊断方法** 要确认原因,请使用以下工具逐步排查(所有命令在终端运行): - **步骤1:监控每个核心使用率** 使用`mpstat -P ALL 1`(每秒刷新)查看所有核心的实时利用率。示例输出: ``` CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle 0 0.50 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 99.25 1 95.00 0.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ``` 这里,核心1使用率100%,而核心0空闲,表明负载不均。 - **步骤2:识别负载进程** 运行`top`,然后按`1`键切换到核心视图,再按`Shift+P`按CPU排序。负载进程的PID可用于进一步分析。 或使用`pidstat -u -p <PID> 1`监控特定进程的CPU使用(用户态和内核态)。 - **步骤3:检查中断分布** 查看中断绑定情况:`cat /proc/interrupts`。如果某个核心的IRQ计数远于其他,说明中断不均衡。 软中断使用`cat /proc/softirqs`。 - **步骤4:分析进程亲和性** 使用`taskset -p <PID>`检查进程的CPU亲和性掩码。例如,输出`pid 123's current affinity mask: 1`表示只绑定到核心0。 - **步骤5:排除调度问题** 使用`perf sched latency`分析调度延迟,或检查内核日志:`dmesg | grep "scheduler"`。 #### 4. **解决方法** 针对不同原因,采取以下措施: - **优化应用程序**: - 将单线程应用改为多线程或并行化(如使用OpenMP或Python的multiprocessing)。 - 避免在代码中硬编码CPU亲和性。 - **调整CPU亲和性**: - 使用`taskset -c 0,1,2,3 <command>`将进程绑定到多个核心,分散负载。引用[3]提到,这可以手动控制CPU分配[^3]。 - 或通过cgroups设置:`cgcreate -g cpu:/mygroup`,然后`cgexec -g cpu:/mygroup <command>`。 - **平衡中断**: - 启用`irqbalance`服务:`sudo systemctl start irqbalance`(默认已安装)。 - 手动设置中断亲和性:`echo <mask> > /proc/irq/<IRQ>/smp_affinity`(例如,`echo 3 > /proc/irq/80/smp_affinity`将中断分发到核心0和1)。 - **优化内核调度**: - 升级内核到最新稳定版(如5.15+),修复已知负载平衡bug。 - 调整调度参数:`sysctl kernel.sched_migration_cost_ns=500000`(降低任务迁移成本)。 - **监控与调优工具**: - 使用`tuned`或`cpupower`工具集自动优化CPU设置。 - 参考引用[4]的代码原理,编程监控核心级使用率[^4]。 如果问题持续,检查硬件(如CPU缓存故障)或使用`perf record`进行深度性能剖析。整体CPU使用率低但单个核心通常不是严重问题,但可能影响延迟敏感型应用。 #### 5. **注意事项** - **系统影响**:引用[1]显示CPU使用率可能导致系统响应变慢,但本场景中整体资源充足,焦点在负载均衡[^1]。 - **预防措施**:定期监控(如使用Prometheus+Grafana),并测试应用在多核环境下的行为。 通过以上步骤,大多数情况下能有效解决负载不均问题。如果提供具体系统信息(如`uname -a`和问题进程详情),可进一步定制建议。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值