一文轻松玩转 Pandas 操作 CSV 文件

使用 Pandas 操作 CSV 文件是数据分析中非常常见的任务,本文将详细介绍如何使用 Pandas 操作 CSV 文件,涵盖了从读取、处理到保存 CSV 文件的全流程

1、读取 CSV 文件

使用 pd.read_csv() 函数读取 CSV 文件,常用参数如下所示

  • filepath_or_buffer:CSV 文件的路径

  • sep:分隔符,默认为逗号(,),可以设置为其他分隔符(如制表符 \t)

  • header:指定行作为列名,默认为 0(第一行),可以设置为 None 表示没有列名

  • index_col:指定列作为行索引

  • usecols:指定要读取的列

  • dtype:指定列的数据类型

  • encoding:制定 csv 文件的编码

示例如下所示

import pandas as pd
# 读取 CSV 文件
df = pd.read_csv('student.csv', sep=',', header=0,
     index_col=0, encoding='gbk')
print(df)

2、查看数据

读取数据后,可以使用以下方法查看数据:

  • df.head(n):查看前 n 行数据,默认 n=5。

  • df.tail(n):查看后 n 行数据。

  • df.info():查看 DataFrame 的基本信息,包括数据类型和缺失值。

  • df.describe():查看数据的统计信息。

示例如下所示

print(df.head())
print(df.describe())

3、数据处理

因为 Pandas 从 CSV 文件读取成 DataFrame 对象,所以 DataFrame 对象的所有操作方法在这里都适用,这里我们就举几个简单例子,而不再将 DataFrame 的全部方法分别赘述

# 1、选择单列
column_data = df['age']

# 2、选择多列
columns_data = df[['class', 'age']]

# 3、根据索引选择行
row_data = df.loc[0] 

# 4、过滤满足条件的行
filtered_df = df[df['age'] > 10]

# 5、添加新列
df['new_column'] = df['age'] * 2

# 6、删除列
df.drop('age', axis=1, inplace=True)  # axis=1 表示列

# 7、根据某列排序
df.sort_values(by='age', ascending=True, inplace=True)

# 8、按某列分组并计算均值
grouped_df = df.groupby('sex').mean()

4、保存 CSV 文件

使用 to_csv() 方法将 DataFrame 保存为 CSV 文件, 常用参数

  • path_or_buf:输出文件路径

  • sep:分隔符,默认为逗号(,)

  • header:是否写入列名,默认为 True

  • index:是否写入行索引,默认为 True

# 保存为 CSV,指定分隔符
df.to_csv('output.csv', sep=',', index=True)

使用 Pandas 操作 CSV 文件非常方便,能够快速进行数据读取、处理和保存。掌握以上基本操作后,你可以高效地进行数据分析和处理。通过灵活运用 Pandas 的功能,能够处理各种复杂的数据分析任务。

如果你喜欢本文,欢迎点赞,并且关注我们的微信公众号:Python技术极客,我们会持续更新数据挖掘分析领域的好文章,让大家在数据挖掘分析领域持续精进提升,成为更好的自己!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

coder_风逝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值