376. 摆动序列(dp)

本文介绍了一种特殊的序列——摆动序列,并提供了一个算法解决方案,用于计算给定整数序列中最长摆动子序列的长度。通过实例展示了如何实现该算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。

例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。

示例 1:

输入: [1,7,4,9,2,5]
输出: 6
解释: 整个序列均为摆动序列。
示例 2:

输入: [1,17,5,10,13,15,10,5,16,8]
输出: 7
解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。
示例 3:

输入: [1,2,3,4,5,6,7,8,9]
输出: 2

来源:力扣(LeetCode)

解析:
使用两个数字,一个记录是下降摆动数组的长度,一个记录上升

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        int n=nums.size();
        //vector<int>dp_up(n),dp_down(n);
        int mx=1;
        if(n<1){
            return 0;
        }
        int pre_up=1;
        int pre_down=1;
        int now_up=1;
        int now_down=1;
        for(int i=1;i<n;i++){
            if(nums[i]>nums[i-1]){
                now_up=max(pre_up,pre_down+1);
                now_down=pre_down;
            }
            else if (nums[i]==nums[i-1]){
                now_up=pre_up;
                now_down=pre_down;
            }
            else if (nums[i]<nums[i-1]){
                now_up=pre_up;
                now_down=max(pre_down,pre_up+1);
            }
            pre_up=now_up;
            pre_down=now_down;
            mx=max(mx,max(now_down,now_up));
        }
        return mx;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值