POJ 3270 Cow Sorting 置换群

/*Template*/
/*Poj 3270 Cow Sorting */
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <utility>
#include <vector>
#include <cassert>
#include <cctype>
#include <climits>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
using namespace std;

const double EPS = 1e-8;
const int MAXN = 10005;
const int INF = 1<<30;
const int MOD = 99991;

#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
//typedef long long LL;
typedef __int64 LL;
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int n,tot=0;
int a[MAXN],b[MAXN];
bool flag[MAXN];
struct rpt
{
	int cnt; //循环节个数
	int min;  
}c[MAXN];
/*int find(int x)
{
	int l=0,r=n,m;
	while(l<r)
	{
		m=l+(r-l)/2;
		if(x==b[m])
			return m;
		if(x<b[m])
			r=m;
		else 
			l=m+1;
	}
}*/
void Polya(int x) //DFS找循环节
{
	for(int i=0;i<n;i++)
	{
		if(b[i]==x && flag[i]==false)
		{
			flag[i]=true;
			c[tot].cnt++;
			c[tot].min = min(c[tot].min,a[i]);
			Polya(a[i]);
		}
	}
}
int main()
{
//  freopen("in.txt","r",stdin);
//  freopen("out.txt,"w",stdout);
	
	cin>>n;
	tot=0;
	int i,amin=INF,sum=0;
	memset(flag,false,sizeof(flag));
	for(i=0;i<n;i++)
	{
		cin>>a[i];
		b[i]=a[i];
		sum+=a[i];
		amin = min(amin,a[i]);
	}
	sort(b,b+n);		
	for(i=0;i<n;i++)
	{
		if(!flag[i])
		{
			c[tot].cnt=1;
			c[tot].min=a[i];
			flag[i]=true;
			Polya(a[i]);	
			tot++;
		}
	}
	for(i=0;i<tot;i++)  
        sum+=min(c[i].min*(c[i].cnt-2),amin*(c[i].cnt+1)+c[i].min); 
	cout<<sum<<endl;
	/*for(i=0;i<tot;i++)
	{
		cout<<c[i].cnt<<" "<<c[i].min<<endl;
	}*/
    return 0;
} 

无聊贴个代码

置换群用DFS实现,分别记录置换最小值和置换的元素个数就好了

在置换中最小的元素分别和别的元素置换就是最优解了

但注意有可能是整个数组中最小的元素进行交换,进行一次比较取最小值就行了


知道是置换但是后面的那个坑点还真没想到呢...

看题解才AC的捂脸...

内容概要:本文档详细介绍了基于MATLAB实现的多头长短期记忆网络(MH-LSTM)结合Transformer编码器进行多变量时间序列预测的项目实例。项目旨在通过融合MH-LSTM对时序动态的细致学习和Transformer对全局依赖的捕捉,显著提升多变量时间序列预测的精度和稳定性。文档涵盖了从项目背景、目标意义、挑战与解决方案、模型架构及代码示例,到具体的应用领域、部署与应用、未来改进方向等方面的全面内容。项目不仅展示了技术实现细节,还提供了从数据预处理、模型构建与训练到性能评估的全流程指导。 适合人群:具备一定编程基础,特别是熟悉MATLAB和深度学习基础知识的研发人员、数据科学家以及从事时间序列预测研究的专业人士。 使用场景及目标:①深入理解MH-LSTM与Transformer结合的多变量时间序列预测模型原理;②掌握MATLAB环境下复杂神经网络的搭建、训练及优化技巧;③应用于金融风险管理、智能电网负荷预测、气象预报、交通流量预测、工业设备健康监测、医疗数据分析、供应链需求预测等多个实际场景,以提高预测精度和决策质量。 阅读建议:此资源不仅适用于希望深入了解多变量时间序列预测技术的读者,也适合希望通过MATLAB实现复杂深度学习模型的开发者。建议读者在学习过程中结合提供的代码示例进行实践操作,并关注模型训练中的关键步骤和超参数调优策略,以便更好地应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值