两个排序数组的中位数——按照求第K小的思路实现

探讨了在两个已排序数组中找到中位数的高效算法,对比了直接合并数组与采用第K小元素策略的性能差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

两个排序数组的中位数

给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 

请找出这两个有序数组的中位数。要求算法的时间复杂度为 O(log (m+n)) 。

你可以假设 nums1 和 nums2 不同时为空。

示例 1:

nums1 = [1, 3]
nums2 = [2]

中位数是 2.0

示例 2:

nums1 = [1, 2]
nums2 = [3, 4]

中位数是 (2 + 3)/2 = 2.5

看完题目以后,我很快想到这个题目的算法思路:

1、合并两个有序数组

2、取合并后数组的中位数

并很快写出java实现代码:

public double findMedianSortedArrays(int[] nums1, int[] nums2) {
        if(nums1.length==0 && nums2.length==0){
            return 0;
        }else if(nums1.length==0){
            return getMiddleNum(nums2);
        }else if(nums2.length==0){
            return getMiddleNum(nums1);
        }
        int[] mergeNum = mergeArray(nums1,nums2);
        double middleNum = getMiddleNum(mergeNum);
        return middleNum;
    }
    public static int[] mergeArray(int[] nums1, int[] nums2){
        int[] mergeNum = new int[nums1.length+nums2.length];
        int i=0,j=0,k=0;
        while(i<nums1.length && j<nums2.length){
            if(nums1[i]<=nums2[j]){
                mergeNum[k++] = nums1[i++]; 
            }else{
                mergeNum[k++] = nums2[j++]; 
            }
        }
        if(i<nums1.length){
            while(i<nums1.length)
                mergeNum[k++]=nums1[i++];
        }else{
            while(j<nums2.length)
                mergeNum[k++]=nums2[j++];
        }
        return mergeNum;
    }
        
    public static double getMiddleNum(int[] mergeNum){
        if(mergeNum.length%2==1){ //奇数
            return mergeNum[mergeNum.length/2];
        }else{
            double result = ((double)mergeNum[mergeNum.length/2]+(double)mergeNum[mergeNum.length/2-1])/2;
            return result;
        }
    }

提交以后的执行效率也很慢:

这个速度我真是接受不了啊,仔细想想,为什么非要把两个数组合并起来再找中位数呢?其实完全可以直接查找中位数呀。就是按照合并数组的思路遍历数组,直到遍历到第middle个(middle代表中位数,奇数是middle是一个数,偶数时,middle是两个数求平均)。以下是实现的代码:

 public static double findMedianSortedArrays(int[] nums1, int[] nums2) {		 
        int len1 = nums1.length;
        int len2 = nums2.length;
        int flag = (len1+len2+1)/2; //中位数的下标值              
        
        if((len1+len2)%2==1){ 	 //如果合并后的数组长度是奇数:	             
        	return getRankNum(flag, nums1, len1, nums2, len2);
        }else{
        	double pre = getRankNum(flag, nums1, len1, nums2, len2);
        	double sub = getRankNum(flag+1, nums1, len1, nums2, len2);
        	return (pre+sub)/2;
        }
}
	  
	public static double getRankNum(int flag, int[] nums1, int len1, int[] nums2, int len2){
		double middle = 0;
		int count = 1, i=0,j=0;
		while(count<=flag){
			if(i<len1 && j<len2){
				if(nums1[i]<=nums2[j]){
					middle = nums1[i];
					i++;
				}else{
					middle = nums2[j];
					j++;
				}	                    
			}else if(i<len1 && j>=len2){
				middle = nums1[i];
				i++;                    
			}else if(i>=len1 && j<len2){
          	
				middle = nums2[j];
				j++;
			}
			count++;	                
		}
		return middle;
  }

提交以后的执行结果:

提高了一些,还算可以吧。

网上有人用第K小的思路实现了这个问题,代码如下:

public static double findMedianSortedArrays(int[] nums1, int[] nums2){
	int len1 = nums1.length;
	int len2 = nums2.length;
	int size = len1 + len2;
	if(size % 2 == 1)
		return findKth(nums1, 0, len1, nums2, 0, len2, size/2 + 1); //size代表第几个数
	else
		return (findKth(nums1, 0, len1, nums2, 0, len2, size/2)+
				findKth(nums1, 0, len1, nums2, 0, len2, size/2 + 1))/2;
	}
	public static double findKth(int[] nums1, int start1, int len1,
			int[] nums2, int start2, int len2, int k){
		if(len1-start1 > len2-start2)
			return findKth(nums2, start2, len2, nums1, start1, len1, k);
		if(len1 - start1 == 0)
			return nums2[k-1];
		if(k == 1)
			return Math.min(nums1[start1], nums2[start2]);
		//p1,p2记录当前需要比较的那个位
		int p1 = start1 + Math.min(len1 - start1, k/2);
		int p2 = start2 + k - p1 + start1;
		if(nums1[p1-1] < nums2[p2-1])
			return findKth(nums1, p1, len1, nums2, start2, len2, k - p1 + start1);
		else if(nums1[p1-1] > nums2[p2-1])
			return findKth(nums1, start1, len1, nums2, p2, len2, k - p2 + start2);
		else
			return nums1[p1 -1];
	}

执行结果如下:

效率不是很高呀,真不知道前50%的大神们用的是什么思路哇,还得继续研究,希望大家有思路的可以共享一下,我们一起学习呀~~~

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值