keras实现faster rcnn的代码分析

本文详细分析了基于keras 2.0.3版本实现Faster R-CNN的过程,该实现依赖tensorflow或theano。首先介绍了代码来源及数据集准备,包括Pascal VOC2007的下载和处理。接着,概述了训练过程的关键步骤:设置参数、构建网络、共享卷积层的搭建、损失函数和编译模型。整个网络搭建简洁,便于微调,能有效防止过拟合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文分析的代码来自https://github.com/yhenon/keras-frcnn,侵删。
keras是一种类似tensorflow的Python语言下的包,同样可以用于卷积神经网络的设计,相较于tensorflow实现相对容易但本身仍需tensorflow或theano的支持,本文分析tensorflow支持下的keras实现,keras=2.0.3,数据集选择Pascal VOC2007,需要下载后手动将train和test数据集进行合并并放置于根目录下的train_path文件夹下(需自己创建)。
数据集下载 地址:https://pjreddie.com/projects/pascal-voc-dataset-mirror/

代码起始于train_frcnn:
1.首先设置数据存放路径,图像的调整相关参数,提取网络的选择,权重的加载(如果存在预权重),提取VGG16预加载数据,设定初始参数
2.获取Pascal VOC2007数据集的相关信息,包括图片的地址、width、height、bboxes()存放于all_imgs,类别数量统计,排序各类别,其中分类的类别中应包括背景,随机打乱图片的顺序,扩展数据集(旋转…)
3.调用已搭建好的卷积网络,实现shared convolutions的构建,代码如下:

from keras.models import Model
from keras.layers import Flatten, Dense, Input, Conv2D, MaxPooling2D, Dropout
from keras.layers import GlobalAveragePooling2D, GlobalMaxPooling2D, TimeDistributed
# Block 1
    x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值