3C-L3相机校正 calibarion cameras

本文介绍了相机校正的基本原理,包括如何通过已知的三维坐标点进行标定,以及如何计算校正矩阵。详细解释了从世界坐标到图像坐标的转换过程,以及通过求解最小特征值来确定校正矩阵的具体方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、图像校正参数

从世界坐标的齐次坐标转换到图像的齐次坐标,最终是获取M。

2、采用已知的三维坐标点进行标定

相机校正的核心就是已知空间中某些点的三维坐标以及对应的图像像素坐标,并进行计算。

3、计算校正矩阵方法--得到方程

根据上面像素坐标和三维坐标的关系得到如下:

进而变换成齐次方程:

首先这是一个齐次方程,这里要对其进行限制,防止得到m为零,同时最小化Am,由于m是一个比例值,所以得到解中m乘以任意比例值还是解,所以这里要求得到m为单位向量。这里用的方法是得到ATA的具有最小特征值的特征向量。因为有12个参数,每个点可以提供2个方程,所以最小需要6个点,当然越多越好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值