pytorch 与 onnx安装

本文探讨了在不同环境下配置程序查找路径的方法,如使用huan环境变量,并讲解了如何在Anaconda中管理CUDA版本,避免不同库间的package冲突。同时,提供了pip和conda安装特定包的示例,如ONNX、PyTorch和torchvision。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、which protoc是按照huan环境变量查找可执行程序;

2、ananconda 应该不会安装cuda的不同版本,如果需要不同版本,可以安装多个版本的cuda,程序回到不同的文件路径下去找cuda

3、conda install 最好不好加-c 和conda-forge, 因为这个是在该库下装软件,不同的库之间的package可能会有冲突;

 

pip install onnx

which pip

conda install pytorch torchvision -c pytorch

python

conda install future

### PyTorchONNX不同版本及其兼容性 当遇到`RuntimeError: Couldn't load custom C++ ops...`错误时,这通常表明PyTorch和依赖库(如torchvision或其他自定义操作)之间存在版本不匹配的情况[^1]。对于PyTorchONNX之间的兼容性问题,主要关注点在于两者各自版本的支持特性以及转换过程中涉及的其他工具链组件。 #### PyTorchONNX版本适配原则 为了确保模型能够顺利从PyTorch导出到ONNX格式并正常运行,在选择这两个框架的具体版本时需遵循一定的指导方针: - **保持同步更新**:尽可能让使用的PyTorch版本接近最新稳定版,并寻找相匹配的ONNX Runtime版本来执行推理任务。较新的PyTorch版本往往能更好地支持最新的ONNX功能集。 - **检查官方文档中的推荐组合**:查阅PyTorch官方文档或GitHub仓库中关于OPSET版本的信息,确认所选PyTorch版本可以生成的目标ONNX OPSET版本号。例如,某些旧版PyTorch可能仅限于较低级别的OPSET标准,而这些级别未必被所有ONNX runtime完全支持[^2]。 - **注意CUDA/GPU配置的影响**:如果项目涉及到GPU加速,则还需要考虑CUDA驱动程序、cuDNN库等因素对整体环境稳定性的作用。特别是当采用特定版本的CUDA时(如CUDA 12.x),应挑选相应优化过的PyTorch发行版以获得最佳性能表现[^3]。 - **验证具体算子实现的一致性**:即使两个软件包的主要部分看似兼容,仍可能存在个别运算符因内部API变更等原因而导致加载失败的情形。此时应当仔细对比双方提供的C++扩展接口说明文件,排查是否有遗漏之处[^4]。 ```python import torch print(torch.__version__) # 查看当前环境中pytorch版本 ``` 通过上述方法可以帮助开发者构建更加健壮的应用场景,减少由于跨平台移植带来的不确定性风险。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值