fish
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
47、MT-BICN:用于推荐的多任务平衡信息级联网络
随着电子商务的发展,信息过载问题日益突出,推荐系统成为解决这一问题的关键工具。多任务学习(MTL)因其能同时优化多个目标,在推荐系统中广泛应用。然而,传统MTL方法在处理任务冲突和任务序列依赖关系方面存在局限。本文介绍了多任务平衡信息级联网络(MT-BICN),该架构通过引入任务特定专家、共享专家和信息传递单元(ITU),有效解决了任务性能平衡和序列依赖建模的问题。实验结果表明,MT-BICN在多个推荐数据集上显著优于主流MTL方法,消融研究也验证了其核心模块的必要性。原创 2025-07-16 00:30:46 · 24 阅读 · 0 评论 -
46、可假设逻辑程序的最小否定模型语义解读
本博文探讨了可假设逻辑程序(ALP)的最小否定模型语义及其与稳定模型语义的关系。文章详细介绍了稳定模型的定义及其背后的三个原则,包括满足、一致性和最大性。同时,提出了基于反向约简的最小否定模型语义,并通过定义信念集和否定集之间的不动点算子,进一步分析了两种语义之间的联系。最后,总结了最小否定模型在ALP推理中的意义,并展望了未来的研究方向。原创 2025-07-15 14:47:57 · 32 阅读 · 0 评论 -
45、方面情感三元组提取与可假设逻辑程序语义研究
本博客研究了自然语言处理中的两个重要方向:方面情感三元组提取(ASTE)和可假设逻辑程序(ALP)的语义分析。在ASTE任务中,提出了一种基于对比学习的配对信息增强方法,并通过实验验证了其有效性。同时,在ALP领域,引入了最小否定模型语义,提供了一种新的逻辑程序解释方式。通过反向约简定义最小否定模型,并与现有的稳定模型语义进行了对比分析。研究结果为智能代理系统的推理和自然语言理解任务提供了理论支持和实践指导。原创 2025-07-14 09:59:08 · 33 阅读 · 0 评论 -
44、知识图谱、多任务学习与方面情感三元组提取的创新方法
本文探讨了知识图谱与多任务学习在引文推荐中的应用,并重点介绍了基于对比学习的方面情感三元组提取(ASTE)配对增强方法。通过构建论文知识图谱和采用对比学习策略,分别在引文推荐和ASTE任务中提升了模型性能。研究还分析了对比学习如何有效解决ASTE任务中方面术语与观点术语匹配的问题,并提出了未来的研究方向,包括模型优化、数据集扩展和跨领域应用。实验结果表明,该方法在多个ASTE数据集上表现优异,为自然语言处理领域的相关任务提供了新的思路和技术支持。原创 2025-07-13 11:01:48 · 44 阅读 · 0 评论 -
43、知识图谱与多任务学习在引文推荐中的应用
本文提出了一种基于知识图谱与多任务学习的引文推荐模型 KMCR。该模型通过构建伪交互矩阵挖掘论文间的潜在交互特征,并结合文本特征进行融合,利用特征共享模块实现引文推荐任务和知识图谱链接预测任务的联合训练。实验结果表明,KMCR 模型在多个数据集上的推荐准确性和排序合理性均优于现有基线模型,验证了其有效性和优越性。原创 2025-07-12 14:16:12 · 19 阅读 · 0 评论 -
42、基于用户反馈与知识图谱的推荐技术研究
本博客主要探讨了两种推荐技术:一是基于用户反馈的反事实数据增强方法,通过设计奖励机制生成高质量的反事实交互,从而提升顺序推荐系统的性能;二是基于知识图谱和多任务学习的引文推荐方法,利用知识图谱的丰富信息和多任务学习的协同效应,提高学术引文推荐的准确性。文章还对这两种方法进行了对比分析,并提出了未来的发展方向与应用建议,旨在为不同场景下的信息过载问题提供解决方案。原创 2025-07-11 11:16:29 · 24 阅读 · 0 评论 -
41、用户反馈驱动的序列推荐反事实数据增强方法
本文提出了一种基于用户反馈的序列推荐反事实数据增强方法(UFC4SRec),通过引入用户反馈信息和模仿强化学习的奖励机制,生成符合真实分布的多样化反事实数据,以解决序列推荐任务中的数据稀疏问题。实验结果表明,该方法在三个真实数据集上均显著提升了推荐性能。原创 2025-07-10 16:20:15 · 17 阅读 · 0 评论 -
40、基于多任务学习的皮肤分割算法研究
本文提出了一种基于多任务学习的皮肤分割算法,通过结合人像和皮肤分割任务的相似性,在不增加皮肤注释数据的情况下提升了分割性能。网络架构采用动态编码器和蒸馏解码器,结合了卷积神经网络和Transformer的优势。实验表明,该方法在多个数据集上表现优异,优于现有主流方法。未来研究将关注计算资源优化、网络结构轻量化及数据集扩展。原创 2025-07-09 13:32:15 · 30 阅读 · 0 评论 -
39、利用非负矩阵分解融合高阶信息进行社区检测
本文提出了一种新的社区检测模型 HGI-NMF,该模型结合了节点属性、高阶图结构和社区信息来学习低维节点表示。通过设计基于NMF的社区互信息方法,并利用高阶图注意力编码器和互信息最大化的联合优化策略,模型在三个真实世界引文网络(Cora、Citeseer 和 Pubmed)上的社区检测任务中表现出色,优于多种基准方法。实验结果验证了模型的有效性和高效性,同时消融研究进一步证明了各模块对整体性能的重要性。原创 2025-07-08 13:35:51 · 23 阅读 · 0 评论 -
38、基于TGKT - RL的个性化学习路径推荐与高阶NMF社区检测方法
本文介绍了两种创新方法:基于TGKT-RL的个性化学习路径推荐模型和高阶非负矩阵分解(HGI-NMF)社区检测方法。前者结合知识追踪与强化学习技术,为学习者生成高效的学习路径;后者通过多跳图注意力编码器和联合优化策略,有效捕捉复杂网络中的高阶信息,提升社区检测性能。实验表明,这两种方法在各自领域优于现有基线方法,并展示了广泛的应用前景。原创 2025-07-07 14:25:41 · 16 阅读 · 0 评论 -
37、前沿技术:Spark 程序优化与个性化学习路径推荐
本文深入探讨了两个前沿技术领域:Spark程序优化与个性化学习路径推荐。在Spark优化部分,介绍了如何通过reduceByKey替代groupByKey来提升性能,并基于人工蜂鸟模型设计了一个Spark程序优化器。在个性化学习路径推荐方面,提出了TGKT-RL模型,结合知识追踪和强化学习技术,有效挖掘学习者的动态个性化特征,提高了推荐的准确性与可解释性。最后,对两个方向的未来发展进行了展望,包括更精细的Spark优化工具设计以及教育技术融合下的应用场景拓展。原创 2025-07-06 14:35:51 · 16 阅读 · 0 评论 -
36、SPOAHA:Spark 程序优化器
本文介绍了 SPOAHA,一种基于人工蜂鸟算法的 Spark 程序优化器。通过算子分类、规则制定(包括算子重排序和替换)、性能评估以及代码生成等步骤,SPOAHA 能够有效减少 Spark 程序的执行时间和洗牌数据量。实验结果显示,在不同场景下,该方法显著提升了程序性能,尤其在处理大规模数据时效果突出。原创 2025-07-05 15:18:32 · 23 阅读 · 0 评论 -
35、多层面技术创新:社交推荐与大数据处理的新突破
本文介绍了两种创新性的技术方案:MAS-DRLRC和SPOAHA。MAS-DRLRC是一种基于深度强化学习和多层注意力机制的社交推荐系统,通过引入异构信息网络和状态表示模型,有效解决了冷启动和数据稀疏性问题,在多个数据集上表现出优于传统推荐算法的性能。SPOAHA是一种基于人工蜂鸟算法的Spark程序优化器,通过对Spark操作符的重新排序和替换,在不改变程序语义的前提下显著提升了大数据处理的性能,减少了数据洗牌量并加快了执行时间。这两种技术为社交推荐和大数据处理领域提供了新的解决方案,并在实际应用场景中展原创 2025-07-04 10:27:39 · 24 阅读 · 0 评论 -
34、基于多步长协作的时间重复计数与多层注意力社交推荐系统
本文介绍了两种创新方法:一种基于多步长协作的时间重复计数方法,用于在复杂场景和长视频中准确计数重复动作;另一种是基于深度强化学习的多层注意力社交推荐系统(MAS-DRLRC),旨在解决用户反馈数据稀疏和用户-物品孤立问题。两种方法分别在视频处理和社交推荐领域取得了显著效果,并通过实验验证了其优越性。未来的研究方向包括提升时间重复计数的鲁棒性和优化社交推荐系统的策略。原创 2025-07-03 13:17:46 · 18 阅读 · 0 评论 -
33、跨领域创新:多路径自适应跨语言摘要与多步长协作的时间重复计数
本文探讨了两项创新技术:多路径自适应跨语言摘要技术和多步长协作的时间重复计数框架。前者通过动态路径选择模块显著提升了跨语言信息整合能力和模型可解释性,后者在处理长视频中的复杂重复动作时表现出优越的准确性,并提出了新数据集 ActCount 以支持更广泛的场景验证。这两项技术分别在跨语言信息处理和视频分析领域具有广泛的应用前景,涵盖新闻媒体、学术研究、体育训练、医疗康复和工业生产等多个领域。未来技术拓展方向包括跨领域融合、模型优化以及数据集的进一步扩充。原创 2025-07-02 09:46:51 · 20 阅读 · 0 评论 -
32、基于多路径的自适应跨语言摘要生成技术解析
本文提出了一种基于多路径的自适应跨语言摘要生成方法,通过引入语言融合模块、生成融合模块和网络选择模块,有效利用多语言信息,提高了跨语言摘要的质量。实验结果表明,该方法在多个数据集上表现优异,并具有良好的可解释性和动态路径调整能力,为国际新闻摘要、学术文献翻译与摘要、跨国企业信息整合等实际应用场景提供了高效的解决方案。原创 2025-07-01 15:48:55 · 21 阅读 · 0 评论 -
31、知识感知双流解码的中文故事生成框架
本文提出了一种知识感知双流解码的中文故事生成框架,通过整合常识知识和双流解码机制,有效提高了生成故事的多样性和大纲要点的覆盖率。模型架构基于编码器-解码器结构,并采用LongLMbase作为基础模型进行微调。双流解码机制包括两次训练和生成过程,以确保输入大纲中的要点能够更全面地体现在输出故事中。实验结果表明,该框架在多个自动评估和人工评估指标上均优于现有基线模型,尤其是在文本多样性和大纲覆盖方面表现突出。同时,文章也分析了当前框架存在的局限性,并提出了未来的研究方向,包括更好地控制大纲要点的融入方式以及更高原创 2025-06-30 13:10:55 · 19 阅读 · 0 评论 -
30、基于知识感知双流解码的中文故事生成框架解析
本文介绍了一种基于知识感知双流解码机制的中文故事生成框架。该框架通过结合外部常识知识和双流解码策略,有效解决了现有模型在大纲要点覆盖率和故事多样性方面的问题。框架使用LongLM作为基础模型,并通过两次解码过程逐步提升生成故事的质量。实验结果表明,该方法在多个评估指标上优于现有模型,为自然语言处理领域的故事创作提供了新的思路。原创 2025-06-29 11:23:57 · 15 阅读 · 0 评论 -
29、基于潜在重要子句重加权的部分最大可满足性问题求解
本文提出了一种基于潜在重要子句重加权的算法SATLC,用于解决部分最大可满足性问题(PMS)。该方法通过动态调整子句权重,并结合初始解生成过程中的矛盾信息和全局范围的局部最优解,显著提升了求解性能。实验结果表明,SATLC在多个基准测试中优于现有方法SATLike3.0,尤其在模块化程度较高的实例上表现突出。同时,文章分析了当前方法存在的局限性,并展望了未来的研究方向,包括改进矛盾处理机制、优化搜索空间以及扩展算法适用范围等。原创 2025-06-28 11:35:31 · 18 阅读 · 0 评论 -
28、基于候选感知注意力增强的图神经网络新闻推荐模型
本文提出了一种候选感知注意力增强的图神经网络新闻推荐模型(GNNR),结合新闻的文本内容特征与用户-新闻交互的高阶结构信息,通过动态捕捉用户兴趣变化提升推荐精度。模型利用CNN、GRU和注意力机制提取新闻和用户的深层表示,并在用户-新闻二分图上应用图神经网络聚合多跳邻域信息,增强了新闻表示的学习。实验表明,GNNR在MIND和Adressa两个数据集上的多项评估指标均优于现有基线方法,尤其在冷启动场景下表现出更强的鲁棒性。该模型可广泛应用于个性化新闻推荐系统,并具备向社交媒体推荐、多模态融合及跨领域推荐拓展原创 2025-06-27 13:21:36 · 21 阅读 · 0 评论 -
27、基于超图增强和信息补充网络的会话推荐及新闻推荐方法
本文提出了一种基于超图增强和信息补充网络的会话推荐方法(HAISN)以及一种用于新闻推荐的候选感知注意力增强图神经网络模型(GNNR)。HAISN通过引入全局图自监督学习通道和超图增强学习通道,解决了超图结构在会话推荐中存在的信息传递困难和噪声干扰问题,有效提升了会话推荐的性能。GNNR通过构建异质用户-新闻图并设计注意力模块,更好地建模了候选新闻与用户兴趣之间的相关性,从而提高了新闻推荐的准确性和效果。两种方法都在各自的领域中展示了出色的性能,并为推荐系统的研究提供了新的思路。原创 2025-06-26 11:49:10 · 18 阅读 · 0 评论 -
26、跨领域推荐与会话推荐的创新方法
本文介绍了两种推荐系统的创新方法:基于转移和领域间对比学习的跨领域推荐图神经网络(TCLCDR)和超图增强和信息补充网络(HAISN)。TCLCDR通过构建图卷积转移层和对比学习损失函数,有效利用两个领域的信息,缓解了数据稀疏和领域差异问题,在跨领域推荐任务中表现出色。HAISN则通过设计全局图自监督学习通道和超图增强学习通道,解决了传统超图建模在会话推荐中的顺序信息丢失和噪声干扰问题,提高了模型性能。实验结果表明,这两种方法在各自的任务中均优于现有基线模型,并为推荐系统的发展提供了新的思路和解决方案。原创 2025-06-25 10:28:15 · 18 阅读 · 0 评论 -
25、CoMeta:解决物品冷启动问题的有效方案
本文介绍了一种解决推荐系统中物品冷启动问题的新方法——CoMeta。该方法通过结合旧物品的协作信息和新物品的属性特征及用户交互数据,生成具有更好适应性的新物品元嵌入。文章详细阐述了CoMeta的核心组件B-EG和S-EG的工作原理,并通过在两个公共数据集上的实验验证了其有效性。实验结果表明,CoMeta优于现有的先进冷启动方法,并且适用于多种推荐模型。原创 2025-06-24 12:48:24 · 24 阅读 · 0 评论 -
24、多层面多兴趣用户兴趣建模与冷启动问题解决方法
本文介绍了两种推荐系统的解决方案:MMRN 和 CoMeta。MMRN 通过多层面和多兴趣的建模方式,能够准确捕捉用户多样化的兴趣,显著提升新闻推荐性能;CoMeta 则通过利用协作信息,为新物品生成高质量的元嵌入,有效解决冷启动问题。两种方法在多个数据集上进行了实验验证,均表现出优于现有方法的性能。原创 2025-06-23 12:27:55 · 21 阅读 · 0 评论 -
23、多级别多兴趣用户兴趣建模在新闻推荐中的应用
本文介绍了一种结合多级别和多兴趣用户兴趣建模的新闻推荐方法——MMRN。该方法通过引入词级、新闻级和高级用户兴趣编码器,能够从多个粒度全面捕捉用户的多样化兴趣,从而提高个性化新闻推荐的准确性与用户体验。原创 2025-06-22 11:29:23 · 18 阅读 · 0 评论 -
22、FedDroidADP:自适应隐私保护框架助力安卓恶意软件分类
本文提出了一种名为 FedDroidADP 的自适应差分隐私保护框架,专门用于提升安卓恶意软件分类系统的隐私保护效果。通过结合隐私风险估计与细粒度的自适应隐私预算分配机制,FedDroidADP 在保证模型分类性能的同时有效抵御了属性推断和标签推断攻击。实验表明,该方法在隐私保护能力和模型效用之间实现了优于现有方法的平衡,并为未来跨平台应用及多技术融合提供了广阔的研究方向。原创 2025-06-21 09:54:20 · 26 阅读 · 0 评论 -
21、多领域对话状态跟踪与安卓恶意软件分类隐私保护技术
本博客介绍了多领域对话状态跟踪和安卓恶意软件分类中的关键技术。重点讨论了DOLLAR模型在解决跨领域槽对相关性和融合特定槽对话信息方面的优势,以及FedDroidADP框架如何通过自适应隐私保护机制平衡隐私与模型实用性。此外,还探讨了联邦学习中面临的隐私推理攻击挑战及现有隐私保护方法的局限性。这些技术为未来的发展提供了重要方向。原创 2025-06-20 09:33:39 · 18 阅读 · 0 评论 -
20、基于对话感知槽位级模式图的对话状态跟踪方法
本文介绍了一种基于对话感知槽位级模式图的对话状态跟踪方法DOLLAR。该方法通过上下文和模式编码器学习对话和槽位的表示,利用两层网络融合对话信息和捕获槽位关系,最后使用两个不同的值预测模块进行槽位值的预测。实验结果表明,DOLLAR模型在多个任务导向对话数据集上取得了优异性能,有效提升了联合目标准确率,并展现了对多领域对话中复杂槽位关系建模的优势。原创 2025-06-19 15:14:14 · 21 阅读 · 0 评论 -
19、基于异构图神经网络的会话推荐与对话状态跟踪方法
本文探讨了基于异构图神经网络的会话推荐模型和一种新颖的对话状态跟踪方法(DOLLAR)。会话推荐模型通过构建异构图捕捉用户、物品和会话之间的复杂关系,并利用注意力机制结合长期与短期偏好,实现更精准的推荐。在Reddit和Xing数据集上的实验表明,该模型性能优于现有方法。DOLLAR方法通过槽级模式图和两层网络设计,有效解决了现有对话状态跟踪技术中过度估计槽关系、忽略隐含关联和引入噪声的问题。两种方法分别在推荐系统和任务导向型对话系统中具有广泛应用前景,为未来研究提供了新思路。原创 2025-06-18 13:48:47 · 18 阅读 · 0 评论 -
18、基于用户评论的强化学习推荐与基于异构图神经网络的会话推荐模型
本文介绍了两种改进的推荐模型:基于用户评论的强化学习推荐模型(RKGR-UR)和基于异构图神经网络的会话推荐模型。RKGR-UR通过整合用户评论信息,提高了对用户偏好的识别能力,并提供了可解释的推荐路径;而基于异构图神经网络的会话推荐模型则结合用户的长期和短期偏好,提升了推荐的准确性和个性化程度。文章详细分析了两种模型的工作原理、实验结果及应用前景,并探讨了未来推荐系统的发展趋势与挑战。原创 2025-06-17 10:12:32 · 21 阅读 · 0 评论 -
17、超图增强对比学习与基于用户评论的强化学习在新闻推荐中的应用
本文探讨了两种创新的新闻推荐方法:超图增强对比学习(HGCL)和基于用户评论的强化学习知识图推理(RKGR-UR)。HGCL通过意图交互学习和超图结构学习,更有效地捕捉用户与新闻之间的复杂关系,提升了推荐的准确性。RKGR-UR则引入用户评论信息到强化学习框架中,结合评分预测任务,显著提高了推荐的个性化程度。文章还比较了两种方法的核心思想和技术手段,并提出了未来研究的方向,如融合两者优势以进一步提升推荐性能。原创 2025-06-16 12:23:00 · 22 阅读 · 0 评论 -
16、基于超图增强对比学习的新闻推荐
本文介绍了一种新颖的超图增强对比学习模型(HGCL),用于解决现有新闻推荐方法在用户意图识别和高阶协作关系建模方面的不足。通过引入意图交互学习模块和超图结构学习模块,HGCL能够更精准地捕捉用户的细粒度兴趣,并缓解图神经网络中的过平滑问题。实验结果表明,HGCL在多个评估指标上均优于现有基线方法,为个性化新闻推荐提供了高效且具有潜力的解决方案。原创 2025-06-15 11:00:27 · 29 阅读 · 0 评论 -
15、Di-GCCF:基于GCN的协同过滤新方法
本文介绍了一种基于图卷积网络(GCN)的新型协同过滤方法Di-GCCF,该方法结合了度感知嵌入和交互特征融合技术,以解决传统模型在处理高阶关系和过平滑问题上的局限性。通过在四个真实世界数据集上的全面实验,Di-GCCF在Recall@20和NDCG@20指标上均优于现有基线模型,尤其是在稀疏数据场景下表现突出。文章还详细描述了模型架构、性能对比、消融分析以及未来研究方向,为推荐系统的发展提供了新的思路。原创 2025-06-14 10:44:33 · 15 阅读 · 0 评论 -
14、低资源抽取式文本摘要与图卷积协同过滤技术解析
本文详细解析了两种关键技术:ParaSum和Di-GCCF。ParaSum是一种针对低资源场景设计的抽取式文本摘要技术,通过将摘要任务重新定义为文本释义问题,并结合对比学习提升性能;而Di-GCCF则是一种改进的图卷积协同过滤推荐模型,通过度感知嵌入和交互特征融合有效解决了传统GCN在推荐系统中的固定粒度和平滑问题。文章通过案例、实验和流程图展示了它们的核心方法与实际应用价值,并展望了未来的发展方向。原创 2025-06-13 16:49:17 · 29 阅读 · 0 评论 -
13、低资源抽取式文本摘要的对比释义方法研究
本文提出了一种名为ParaSum的新型抽取式文本摘要方法,专门针对低资源场景。该方法通过将摘要任务重新表述为文本释义任务,充分利用预训练语言模型(PLMs)的知识,并结合对比学习和知识迁移策略,有效缓解了低资源环境下监督信号稀疏的问题。实验结果表明,ParaSum在多个数据集上均优于现有基线模型,尤其在低资源条件下表现出显著优势。此外,ParaSum具有良好的泛化能力,适用于英语和中文等多种语言环境,并在新闻摘要、信息检索和智能客服等实际场景中具有广泛应用价值。原创 2025-06-12 13:17:21 · 11 阅读 · 0 评论 -
12、协同过滤的去偏对比损失与低资源文本摘要的新范式
本文探讨了推荐系统和文本摘要领域的两个关键问题,提出了一种用于协同过滤的去偏对比损失(DCL)以及一种名为ParaSum的低资源提取式文本摘要新范式。DCL通过自动挖掘难负实例并优化梯度控制,有效缓解样本偏差问题,显著提升了推荐性能和训练效率。ParaSum则通过将文本摘要任务转化为文本释义的方式,更好地利用预训练语言模型(PLMs)的知识,在低资源场景下取得了优于现有方法的表现。两种方法均在多个真实数据集上验证了其有效性,并为未来研究提供了新的方向。原创 2025-06-11 10:44:45 · 19 阅读 · 0 评论 -
11、文本分类与协同过滤的创新模型与方法
本文介绍了两种创新模型与方法,分别应用于文本分类和协同过滤领域。首先,MDGAT 模型通过多显示图融合模块、多步信息聚合方法以及 GRU 的结合,全面捕捉文本的语法、语义、句法和主题信息,在多个数据集上表现出优越的文本分类性能。其次,针对协同过滤中样本偏差问题,提出了去偏对比损失(DCL),通过引入偏差校正概率 τ+,有效减轻了批内采样策略中的假负例影响,显著提升了推荐系统的准确性和训练效率。实验结果表明,这两种方法在各自领域均优于现有主流模型与技术,并为未来研究提供了新的方向。原创 2025-06-10 13:26:23 · 12 阅读 · 0 评论 -
10、多显示图注意力网络在文本分类中的应用
本文介绍了多显示图注意力网络(MDGAT)在文本分类任务中的应用。该模型通过构建多显示图(包括文本相似度图、超图、句法依赖图和主题图),并结合多步信息聚合机制和门控循环单元(GRU),有效捕捉文本的语法、语义、句法和主题特征,显著提升了文本分类性能。实验结果表明,MDGAT在多个基准数据集上优于现有方法,消融实验进一步验证了模型中各模块的有效性。原创 2025-06-09 12:09:54 · 15 阅读 · 0 评论 -
9、文本分类新方法:MA - TGNN与MDGAT模型解析
本文介绍了两种创新性的文本分类模型MA-TGNN和MDGAT。MA-TGNN通过基于单词内在关系的文本级图构建、门控循环单元更新节点表示以及多聚合器邻域信息融合,在多个数据集上取得了优异的分类效果。MDGAT则在此基础上进一步优化,通过融合多显示图以捕获句法、语义等多维度文本特征,并引入多步信息聚合机制,充分考虑节点内重要性和节点间相关性,显著提升了分类性能。实验表明,这两种模型在短文本与长文本、二分类与多分类任务中均表现出色,为未来文本分类研究提供了新的思路。原创 2025-06-08 10:06:22 · 16 阅读 · 0 评论 -
8、中文关系抽取与文本分类模型研究
本文主要探讨了中文关系抽取与文本分类模型的研究。在中文关系抽取部分,提出了一种基于交叉注意力语义交互增强(CSI)分类器和基于上下文的加权方法(CPW)模块的 BC-Lattice 模型,并通过实验验证其在两个数据集上的优越性能。在文本分类任务中,提出了一种多聚合器图神经网络模型(MA-TGNN),通过多种聚合技术提取更全面的特征信息,展示了优于其他常见模型的分类效果。研究还对模型进行了消融实验、技术分析和未来展望,为自然语言处理领域提供了新的思路和发展方向。原创 2025-06-07 11:25:10 · 17 阅读 · 0 评论