提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
前言
模型评估是对训练好的模型性能进行评估, 模型评估是模型开发过程不可或缺的一部分。它有助于发现表达数据的最佳模型和所选模型将来工作的性能如何。
机器学习的任务有回归,分类和聚类,针对不同的任务有不同的评价指标。按照数据集的目标值不同,可以把模型评估分为分类模型评估和回归模型评估。
这篇文章要讲的就是分类模型———KNN模型
一、模型评估的性能度量
1.混淆矩阵
混淆矩阵(Confusion Matrix)是用于衡量分类模型预测性能的一种常见工具。它是一个2x2的矩阵,用于统计模型在二分类问题中的分类结果。混淆矩阵包含四个指标:真正例(True Positive, TP)、真负例(True Negative, TN)、假正例(False Positive, FP)、假负例(False Negative, FN),它们表示模型在预测中的不同情况。
TP表示模型正确预测为正例的样本数
FN表示模型将正例错误预测为负例的样本数
FP表示模型将负例错误预测为正例的样本数
TN表示模型正确预测为负例的样本数。
由混淆矩阵我们可以求得准确率,精确率等性能度量
2.准确率(Accuracy):分类正确的样本数占总样本数的比例。
确率(Accuracy)是指分类模型对所有样本进行分类的正确率,即分类正确的样本数除以总样本数。准确率是最常用的模型评估指标之一,它可以告诉我们模型在对数据进行分类时的整体表现。
准确率的计算公式为:
Accuracy = (TP + TN)/(TP + TN + FP + FN)
有时,准确率可能并不能反映模型的真实性能,尤其是在数据不平衡的情况下。在这种情况下,模型可能会有很高的准确率,但是对于少数类别的样本预测效果较差。因此,要全面评估模型的性能,我们需要考虑其他指标,例如精确率、召回率和F1值等。
2.精确率(Precision):在被预测为正例的样本中,真正例的比例。
精确率(Precision)是指在所有被模型预测为正例的样本中,真正例的比例。精确率衡量了模型预测为正例的样本中有多少是真正的正例,是评估模型预测结果质量的重要指标之一。
精确率的计算公式为:
Precision = TP/(TP+FP)
精确率越高,说明模型在预测正例时更加准确,假阳性的数量较少。然而,需要注意的是,精确率高并不意味着模型的整体性能就很好,因为它没有考虑到模型可能漏掉的真正例(假阴性)。因此,精确率通常与召回率等指标一起使用,以全面评估模型的性能。
3.召回率(Recall):在所有实际正例样本中,被正确预测为正例的比例
召回率(Recall)是指在所有实际为正例的样本中,被模型预测正确为正例的比例。它衡量了模型能够正确预测出正例样本的能力,是评估分类模型性能的重要指标之一。
召回率的计算公式为:
Recall = (TP)/(TP + FN)
召回率越高,说明模型在识别出实际为正例的样本时表现得越好,假反例的数量较少。但与精确率类似,高召回率并不一定代表模型整体性能良好,因为它没有考虑到模型可能会将负例错误地预测为正例。
在实际应用中,召回率通常与精确率一起使用,以全面评估模型的性能。较高的召回率和精确率通常意味着模型在识别出正例的同时,尽量避免了将负例误判为正例和漏掉真正的正例,达到了更好的平衡。
4.F1值:精确率和召回率的调和平均数。
F1值是精确率和召回率的调和平均数,用于综合评估分类模型的性能。它是精确率和召回率之间的一种权衡指标,能够考虑到两者的平衡情况。
F1值的计算公式为:
2/F1 = 1/Precision + 1/Recall
F1值的取值范围为0到1,其中1表示最佳性能,0表示最差性能。当模型的精确率和召回率同时较高时,F1值也会相应较高。但是,精确率和召回率在某些情况下可能存在一种折衷关系:提高精确率可能会导致召回率下降,反之亦然。因此,F1值可以帮助我们在精确率和召回率之间取得一个平衡。
5.ROC曲线(Receiver Operating Characteristic curve):
ROC曲线使用的指标是真正率(True positive rate, TPR)与假正率 (False positive rate, FPR),其横坐标为FPR, 纵坐标为TPR.
ROC曲线的特点是:随着阈值的不断降低,TPR和FPR会不断增加。随着分类器性能的提高,ROC曲线会不断靠近左上角,AUC(ROC曲线下方面积)也会越来越接近1。因此,通过观察ROC曲线,我们可以了解分类器在不同阈值下的性能表现,而AUC可以作为一个综合性能指标来评估模型的性能优劣。
AUC就是衡量学习器优劣的一种性能指标。从定义可知,AUC可通过对ROC曲线下各部分的面积求和而得。
AUC值越接近1,说明模型的性能越好;而AUC值越接近0.5,则说明模型的性能越差,甚至可能是一个随机猜测的模型。
6.PR曲线:
PR曲线(Precision-Recall curve)是一种二分类模型的评估工具,它以精确率(Precision)为纵轴,召回率(Recall)为横轴,描述了模型在不同阈值下的分类性能。
PR曲线下的面积(AP,Average Precision)是PR曲线的一个重要性能指标,通常用来评估模型的整体性能。与AUC类似,AP也是一个取值在0到1之间的指标,其数值越大表示模型的性能越好。在分类器评估中,有时我们更关心模型在稀有类别样本上的表现,此时,AP是一个比准确率和AUC更加准确的判断标准。
二、KNN模型PR和ROC曲线绘制
1.引入库
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import roc_curve, auc
from sklearn.metrics import precision_recall_curve, average_precision_score
make_classification函数用于生成模拟的二分类数据集,包括特征和标签。
train_test_split函数用于将数据集划分为训练集和测试集。
KNeighborsClassifier用于实现K近邻分类器。
roc_curve函数用于计算 Receiver Operating Characteristic (ROC) 曲线,用于评估分类器的性能。
auc函数用于计算ROC曲线的 Area Under Curve (AUC)。
precision_recall_curve函数用于计算 precision-recall 曲线,用于评估分类器的性能。average_precision_score函数用于计算平均precision,用于评估分类器的性能。
2.生成样本数据
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42