01-复杂度1 最大子列和问题

本文介绍了一种计算给定整数序列中最大子列和的算法实现,通过示例详细解释了如何找到具有最大和的连续子序列,并提供了一个C++程序代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

01-复杂度1 最大子列和问题 

给定K个整数组成的序列{ N1, N2, ..., NK },“连续子列”被定义为{ Ni, Ni+1, ..., Nj },其中 1ijK。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。

输入格式:

输入第1行给出正整数K (100000);第2行给出K个整数,其间以空格分隔。

输出格式:

在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。

输入样例:

6
-2 11 -4 13 -5 -2

输出样例:

20

#include<iostream>
using namespace std;
int main()
{
	int k;
	scanf("%d", &k);
	int *a = new int[k];
	for (int i = 0; i < k; i++)
		scanf("%d", &a[i]);
	int first, last,sum=0,max=0,right,left=0;
	for (int i = 0; i < k; i++)
	{
		sum += a[i];
		right = i;
		if (sum>max)
		{
			max = sum;
			first = left;
			last = right;
		}
		if (sum < 0)
		{
			sum = 0;
			left = i + 1;
		}
	}
	cout << max;
/*	if (max == 0)
		cout << " " << a[0] << " " << a[k-1];
	else
		cout << " " << first<< " " << last;
	*/return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值