算法|合并两个有序数组

力扣第88题:https://leetcode-cn.com/problems/merge-sorted-array/
题目描述
给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。
请你合并 nums2 到 nums1 中,使合并后的数组同样按非递减顺序排列。
注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n。
示例1
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]
解释:需要合并 [1,2,3] 和 [2,5,6] 。
合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
示例 2
输入:nums1 = [1], m = 1, nums2 = [], n = 0
输出:[1]
解释:需要合并 [1] 和 [] 。
合并结果是 [1] 。

解题

  • 1.直接合并,暴力排序
class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        for (int i = 0; i != n; ++i) {
            nums1[m + i] = nums2[i];
        }
        Arrays.sort(nums1);
    }
}

复杂度分析

时间复杂度:O((m+n)\log(m+n))O((m+n)log(m+n))。
排序序列长度为 m+nm+n,套用快速排序的时间复杂度即可,平均情况为 O((m+n)\log(m+n))O((m+n)log(m+n))。

空间复杂度:O(\log(m+n))O(log(m+n))。
排序序列长度为 m+nm+n,套用快速排序的空间复杂度即可,平均情况为 O(\log(m+n))O(log(m+n))

  • 2.双指针:方法一没有利用数组nums1 与 nums2 已经被排序的性质。为了利用这一性质,我们可以使用双指针方法。这一方法将两个数组看作队列,每次从两个数组头部取出比较小的数字放到结果中
    为两个数组分别设置一个指针 p1与 p2来作为队列的头部指针。代码实现如下:
class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        int p1 = 0, p2 = 0;
        int[] sorted = new int[m + n];
        int cur;
        while (p1 < m || p2 < n) {
            if (p1 == m) {
                cur = nums2[p2++];
            } else if (p2 == n) {
                cur = nums1[p1++];
            } else if (nums1[p1] < nums2[p2]) {
                cur = nums1[p1++];
            } else {
                cur = nums2[p2++];
            }
            sorted[p1 + p2 - 1] = cur;
        }
        for (int i = 0; i != m + n; ++i) {
            nums1[i] = sorted[i];
        }
    }
}

复杂度分析

时间复杂度:O(m+n)O(m+n)。
指针移动单调递增,最多移动 m+nm+n 次,因此时间复杂度为 O(m+n)O(m+n)。

空间复杂度:O(m+n)O(m+n)。
需要建立长度为 m+nm+n 的中间数组sorted。

  • 3.逆向双指针:

方法二中,之所以要使用临时变量,是因为如果直接合并到数组 nums 1中,nums 1中的元素可能会在取出之前被覆盖。那么如何直接避免覆盖nums1中的元素呢?观察可知,nums1的后半部分是空的,可以直接覆盖而不会影响结果。因此可以指针设置为从后向前遍历,每次取两者之中的较大者放进nums1的最后面。
严格来说,在此遍历过程中的任意一个时刻,nums1数组中有 m-p1-1
个元素被放入nums1的后半部,nums2数组中有 n-p2-1 个元素被放入 nums1的后半部,而在指针 p1的后面,nums1 数组有 m+n-p1-1
个位置。由于 m+n-p1-1 >= m-p1-1+n-p2-1 等价于p2 ≥ −1 永远成立,因此 p1后面的位置永远足够容纳被插入的元素,不会产生p1的元素被覆盖的情况。
实现代码如下:

class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        int p1 = m - 1, p2 = n - 1;
        int tail = m + n - 1;
        int cur;
        while (p1 >= 0 || p2 >= 0) {
            if (p1 == -1) {
                cur = nums2[p2--];
            } else if (p2 == -1) {
                cur = nums1[p1--];
            } else if (nums1[p1] > nums2[p2]) {
                cur = nums1[p1--];
            } else {
                cur = nums2[p2--];
            }
            nums1[tail--] = cur;
        }
    }
}

复杂度分析

时间复杂度:O(m+n)O(m+n)。
指针移动单调递减,最多移动 m+nm+n 次,因此时间复杂度为 O(m+n)O(m+n)。

空间复杂度:O(1)O(1)。
直接对数组nums1原地修改,不需要额外空间。

  • PS:Java创建数组方式
  1. 类型名称[ ] 变量名 = new 类型名称[ length];
int[]  arr = new int[5];
  1. 类型名称[ ] 变量名 = {?,?,?};
int[]  arr = {1,2,3,4,5};
  1. 类型名称[ ] 变量名 = new 类型名称[]{?,?,?};
int[]  arr = new int[]{1,2,3,4,5};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值