李宏毅机器学习2020课后作业笔记 【hw1】 pm2.5值的预测

本文介绍了如何通过李宏毅的机器学习课程作业,对台湾某市空气质量数据进行预处理、构建线性回归模型,并使用Adagrad优化器进行训练。作者详细阐述了数据标准化、模型构建过程、评估方法以及个人总结,重点在于数据预处理和Adagrad的实际应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

李宏毅机器学习2020课后作业 ML2020spring - hw1

1. 问题描述

给定一年内台湾某市的空气质量观测数据(每个月20天,每小时记录一次,每天共记录24个小时),目的是来预测某时刻的pm2.5值。训练数据是12个月,每个月20天的空气质量观测数据,每天共有18个特征(包括pm2.5),每天共24个小时的数据,也就是说每天共18 * 24个数据值。测试数据是前9个小时的数据,用来预测第10个小时的pm2.5值。

2. 数据预处理

  1. p a n d a s pandas pandas读取 t r a i n . c s v train.csv train.csv文件,先读取成 D a t a F r a m e DataFrame DataFrame类型,再转成 n u m p y . n d a r r a y numpy.ndarray numpy.ndarray类型
  2. 按照作业要求,所有 N R NR NR都置为0
  3. 再把每个月的数据拼成一排,用字典存储, k e y key key就是月份, v a l u e value value就是每个月的数据
  4. 做标准化, n p . m e a n np.mean np.mean n p . s t d np.std np.std
  5. 分割数据集,80% + 20%

3. 模型构建

这个作业构建的是线性回归模型, l o s s loss loss采用 R M S E RMSE

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值