稀疏矩阵向量乘法的openmp并行优化

本文探讨了如何使用OpenMP对稀疏矩阵向量乘法进行并行优化,包括直接添加`pragma omp parallel for`、循环展开、CSRL策略、任务再划分以实现负载均衡以及将并行区置于外部。实验表明,优化策略能够有效减少计算时间,提高性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

稀疏矩阵向量乘法

添加链接描述本人在这篇博客已经介绍过稀疏矩阵向量乘法以及相关的一些存储方式,这里重点开始介绍openmp的并行优化。
下面这个图片就是采用CSR格式读取稀疏矩阵向量乘法的主体架构,全称为Compressed Sparse Row Matrix压缩稀疏矩阵行格式,该格式对矩阵进行行压缩,通过row_ptr,col_ind,values来确定矩阵。对于第i行来说,该行非零元素的列索引存储在col_ind[row_ptr[i]:row_ptr[i + 1]]中,该行非零元素值存储在values[row_ptr[i]:row_ptr[i + 1]]中。可以看出,row_ptr的长度为matrix row + 1,col_ind,val_ind长度为矩阵非零元素个数。CSR格式经常用于读取稀疏矩阵以后计算,运算高效。

在这里插入图片描述
由于稀疏矩阵向量乘法的速度太快,所以为了进一步观察不同并行策略对时间的影响,这里我们希望稀疏矩阵向量乘法可以做500次,每次迭代都根据上一次的结果作为初始x。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谨慎付费(看不懂试读博客不要订阅)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值