图 G 由顶点集 V 和边集 E 组成,记为 G = ( V , E ) G=(V, E) G=(V,E),其中 V(G) 表示图 G 中顶点的有限非空集;E(G) 表示图 G 中顶点之间的关系(边)的集合
若 V = { v 1 , v 2 , . . . , v n } V = \{ v_1, v_2, ..., v_n \} V={
v1,v2,...,vn},则用 ∣ V ∣ | V | ∣V∣ 表示图 G 中顶点的个数,也称图 G 的阶, E = { ( u , v ) ∣ u ∈ V , v ∈ V } E = \{ ( u,v ) | u \in V, v \in V \} E={
(u,v)∣u∈V,v∈V},用 ∣ E ∣ | E | ∣E∣ 表示图 G 中边的条数
线性表、树都可以为空,但图不能为空
有向图
若 E 是有向边(也称弧)的有限集合,则图 G 为有向图
弧是顶点的有序对,记为 ⟨ v , w ⟩ \left \langle v,w \right \rangle ⟨v,w⟩,其中 v, w 是顶点,v 称为弧尾,w称为弧头, ⟨ v , w ⟩ \left \langle v,w \right \rangle ⟨v,w⟩ 称为从顶点 v 到顶点 w 的弧,也称 v 邻接到 w,或 w 邻接自 v
无向图
若 E 是无向边(简称边)的有限集合,则图 G 为无向图
边是顶点的无序对,记为 ( v , w ) ( v,w ) (v,w) 或 ( w , v ) ( w,v ) (w,v),因为 ( v , w ) = ( w , v ) ( v,w )=( w,v ) (v,w)=(w,v),其中 v, w 是顶点,可以说顶点 w 和顶点 v 互为邻接点,边 ( v , w ) ( v,w ) (v,w) 依附于顶点 w 和 v,或者说边 ( v , w ) ( v,w ) (v,w) 和顶点 w, v 相关联
简单图
一个图 G 若满足:① 不存在重复边;② 不存在顶点到自身的边,则称图 G 为简单图
数据结构中仅讨论简单图
多重图
若图 G 中某两个点之间的边数多于一条,又允许顶点通过同一条边和自己关联,则 G 为多重图
完全图(也称简单完全图)
对于无向图, ∣ E ∣ | E | ∣E∣ 的取值范围是 0 0 0 到 n ( n − 1 ) / 2 n(n-1)/2 n(n−1)/2,有 n ( n − 1 ) / 2 n(n-1)/2 n(n−1)/2 条边的无向图称为无向完全图,在完全图中任意两个顶点之间都存在边
对于有向图, ∣ E ∣ | E | ∣E∣ 的取值范围是 0 0 0 到 n ( n − 1 ) n(n-1) n(n−1),有 n ( n − 1 ) n(n-1) n(n−1) 条边的无向图称为有向完全图,在有向完全图中任意两个顶点之间都存在方向相反的两条弧
子图
设有两个图 G = ( V , E ) G=(V, E) G=(V,E) 和 G ′ = ( V , ′ E ′ ) G'=(V,' E') G′=(V,′E′),若 V ′ V' V′ 是 V V V 的子集,若 E ′ E' E′ 是 E E E 的子集,则称 G ′ G' G′ 是 G G G 的子图
若有满足 V ′ ( G ) = V ( G ) V'(G) = V(G) V′(G)=V(G) 的子图 G ′ G' G′ ,则称其为 G G G 的生成子图
连通、连通图和连通分量
在无向图中,若从顶点 v 到顶点 w 有路径存在,则称 v 和 w 是连通的
若图 G 中任意两个顶点都是连通的,则称图 G 为连通图,否则称为非连通图
无向图中的极大连通子图称为连通分量
n 个顶点的连通图最少有 n-1 条边
强连通图、强连通分量
在有向图中,若从顶点 v 到顶点 w 和顶点 w 到顶点 v之间都有路径,则称这两个顶点是强连通的
若图中任何一对顶点都是强连通的,则称此图为强连通图
有向图中的极大强连通子图称为有向图的强连通分量
n 个顶点的连通图最少有 n 条边
生成树、生成森林
连通图的生成树是包含图中全部顶点的一个极小连通子图
若图中顶点数为 n,则它的生成树含有 n-1 条边
对生成树而言,若砍去它的一条边,则会变成非连通图,若加上一条边则会变形成一个回路
在非连通图中,连通分量的生成树构成了非连通图的生成森林
顶点的度、入度和出度
图中每个顶点的度定义为以该顶点为一个端点的边的数目
对于无向图,顶点 v 的度是指依附于该顶点的边的条数,记为 TD(v)
在具有 n 个顶点、e 条边的无向图中, ∑ i = 1 n T D ( v i ) = 2 e \sum_{i=1}^{n}TD(v_i) = 2e ∑i=1nTD(vi)=2e,即无向图的全部顶点的度的和等于边数的两倍,因为每条边和两个顶点相关联
对于有向图,顶点 v 的度分为入度和出度,入度是以顶点 v 为终点的有向边的数目,记为 I D ( v ) ID(v) ID(v);而出度是以顶点 v 为起点的有向边的条数,记为 O D ( v ) OD(v) OD(v)。顶点 v 的度等于其入度和出度之和,即 T D ( v ) = I D ( v ) + O D ( v ) TD(v) = ID(v) + OD(v) TD(v)=ID(v)+OD(v)
在具有 n 个顶点、e 条边的无向图中, ∑ i = 1 n I D ( v i ) = ∑ i = 1 n O D ( v i ) = e \sum_{i=1}^{n}ID(v_i) = \sum_{i=1}^{n}OD(v_i) = e ∑i=1nID(vi)=∑i=1nOD(vi)=e,即有向图的全部顶点的入度之和与出度之和相等,并且等于边数。这是因为每条有向边都有一个起点和终点
边的权和网
在一个图中,每条边都可以标上具有某种含义的数值,该数值称为该边的权值
这种边上带有权值的图称为带权图,也称网
稠密图、稀疏图
边数很少的图称为稀疏图,反之称为稠密图。稀疏和稠密本身是模糊的概念,稀疏图和稠密图常常是相对而言的
一般当图 G 满足 ∣ E ∣ < ∣ V ∣ l o g ∣ V ∣ |E| < |V| log|V| ∣E∣<∣V∣log∣V∣ 时,可以将 G 视为稀疏图
路径、路径长度和回路
顶点 v p v_p vp 到顶点 v q v_q vq 之间的一条路径是指顶点序列 v p , v i 1 , v i 2 , . . . , v i m , v q v_p, v_{i_1}, v_{i_2}, ..., v_{i_m}, v_q vp,vi1,vi2,...,vim,vq,当然,关联的边也可以理解为路径的构成要素
结点数为 n n n 的图 G = ( V , E ) G = (V, E) G=(V,E) 的邻接矩阵 A A A 是 n × n n×n n×n 的。将 G G G 的顶点编号为 v 1 , v 2 , . . . , v n v_1, v_2, ..., v_n v1,v2,...,vn。若 ( v i , v j ) ∈ E (v_i, v_j) \in E (vi,vj)∈E,则 A [ i ] [ j ] = 1 A[i][j] = 1 A[i][j]=1,否则 A [ i ] [ j ] = 0 A[i][j] = 0 A[i][j]=0
A [ i ] [ j ] = { 1 , 若 ( v i , v j ) 或 ⟨ v i , v j ⟩ 是 E ( G ) 中 的 边 0 , 若 ( v i , v j ) 或 ⟨ v i , v j ⟩ 不 是 E ( G ) 中 的 边 A[i][j] = \begin{cases} 1,若(v_i,v_j)或\left \langle v_i,v_j \right \rangle是E(G)中的边 \\ 0,若(v_i,v_j)或\left \langle v_i,v_j \right \rangle不是E(G)中的边\end{cases} A[i][j]={
1,若(vi,vj)或⟨vi,vj⟩是E(G)中的边0,若(vi,vj)或⟨vi,vj⟩不是E(G)中的边
对于带权图而言,若顶点 v i v_i vi 和 v j v_j vj 之间有边相连,则邻接矩阵中对应项存放着该边对应的权值,若顶点 v i v_i vi 和 v j v_j vj 不相连,则用 ∞ \infty ∞来代表这两个顶点之间不存在边
A [ i ] [ j ] = { w i j , 若 ( v i , v j ) 或 ⟨ v i , v j ⟩ 是 E ( G ) 中 的 边 0 或 ∞ , 若 ( v i , v j ) 或 ⟨ v i , v j ⟩ 不 是 E ( G ) 中 的 边 A[i][j] = \begin{cases} w_{ij},若(v_i,v_j)或\left \langle v_i,v_j \right \rangle是E(G)中的边 \\ 0或\infty,若(v_i,v_j)或\left \langle v_i,v_j \right \rangle不是E(G)中的边\end{cases} A[i][j]={
wij,若(vi,vj)或⟨vi,vj⟩是E(G)中的边0或∞,若(vi,vj)或⟨vi,vj⟩不是E(G)中的边