
NLP
文章平均质量分 70
关于自然语言处理
lijfrank
Life is too short, recording the fragments of studying.
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Computational Linguistics期刊全解析:领域顶刊的投稿指南与学术价值
(CL)作为该领域的标杆期刊,始终是研究者发表前沿成果的首选平台。本文将从期刊影响力、投稿策略、收稿方向等角度,为学者提供一份全面的指南。近年中国学者发文比例显著提升,麻省理工、哈佛大学等顶尖机构的研究成果占据主流,但国内高校如清华大学、北京大学等也逐渐崭露头角。,JCR分区为语言学(SSCI Q1)与人工智能(SCIE Q2),中科院2023年升级版列为计算机科学大类2区。,是语言学与人工智能交叉研究的权威期刊。:强调理论深度与方法论突破,如语言模型架构、多模态交互算法、语义分析技术等。原创 2025-03-08 18:25:33 · 1829 阅读 · 0 评论 -
计算语言学领域顶级期刊TACL全面解析:投稿指南与学术影响力
(TACL)作为国际公认的顶级期刊,始终是学者们追求学术突破的核心阵地。本文将从期刊定位、学术影响力、投稿策略等角度,为研究者提供一份全面的TACL指南。TACL不仅是展示学术成果的窗口,更是参与全球计算语言学对话的桥梁。对于追求理论深度或应用创新的研究者,TACL值得作为投稿首选。,是NLP领域的标杆期刊。:需严格遵循ACL论文模板,建议提前使用官方LaTeX模板排版。:论文常被ACL、EMNLP等顶会引用,是领域内研究的风向标。:中国学者近年发文占比显著提升,成为不可忽视的科研力量。原创 2025-03-08 18:20:59 · 1535 阅读 · 0 评论 -
IEEE TASLP更名背后:一场学术期刊的品牌升级与战略聚焦
2025年,自然语言处理领域迎来重要变革——国际顶级期刊《IEEE/ACM TASLP》正式更名为《IEEE Transactions on Audio, Speech and Language Processing》。这场更名不仅关乎期刊名称的调整,更折射出学术出版生态的深层演变。原创 2025-03-08 18:10:22 · 1103 阅读 · 0 评论 -
国际顶刊TASLP投稿全解析:音频与语言处理研究者的黄金选择
(TASLP)作为自然语言处理领域的顶级期刊,自1993 年创刊以来持续引领学科发展。:语言建模、多模态对话系统、语音驱动文本生成。:端到端语音合成、方言识别、声纹生物识别。:约18%-22%(初审退稿率超60%):每年3-5月(避开会议论文截稿高峰):302篇(中国学者占比21.7%)• 预提交arXiv预印本(需声明)• 数据层面:开源代码或发布新数据集。:11.3(超越91%同领域期刊)• 应用层面:工业场景压力测试报告。• 算法层面:提供消融实验对比表。:4.1(五年IF 4.2)原创 2025-03-08 17:59:51 · 1712 阅读 · 0 评论 -
自然语言处理期刊
Tier1:Tier2:原创 2025-03-03 18:31:42 · 238 阅读 · 0 评论 -
人工智能领域顶级期刊
人工智能原创 2025-03-02 21:48:33 · 995 阅读 · 0 评论 -
BERT直观理解
BERT架构图 简单解释一下BERT的架构图。位置向量解决了时序问题(RNN不能并行的执行,只能一个一个的来,但是不一个一个的来,时序即word的先后顺序,怎么处理呢,位置向量就解决了);Self-Attention解决RNN不能并行的问题,multi-head可以提取到多种语义的层次表达,这一部分是核心;接着将向量层的数据(向量表示)和Mutil-Head-Attention的数据进行合并,这个操作叫残差连接,为了使下一层不比上一层差,其中归一化(标准化)的操作是为了更好的求导,防止梯度消失,还能原创 2020-06-05 23:14:28 · 1244 阅读 · 0 评论 -
BERT简单理解-入门
简介BERT模型来自谷歌团队的paper——BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,它在11个NLP任务中刷新了成绩,效果非常好,非常惊人。但是,这项工作不是很好复现,如果没有足够的资源就不要想了 。之前,利用预训练的语言表征来完成下游NLP任务的研究,可以概括为两类:feature-based和fine-tuning。feature-based类别比如ELMo,fine-tuning原创 2020-05-31 23:36:06 · 2007 阅读 · 0 评论 -
Attention机制
想要看懂时下流行的Bert,必须要先弄懂Transformer,弄懂Transformer还得搞清楚什么是Attention。概述Attention机制之所以能够迅速发展,主要是它解决了很多难题,它的总体思路为从关注全部到关注重点。主要有以下特点:效率高Attention 通过选择性聚焦,一定程度上解决了 RNN 不能并行计算的问题。Attention机制每一步计算不依赖于上一步的计算结果,因此可以和CNN一样并行处理。效果好在MT、QA、情感分析、POS、parsing和对话等任务中使用at原创 2020-05-30 00:50:15 · 432 阅读 · 0 评论 -
XLNet 简单介绍
XLNet 是一个类似 BERT 的模型,而不是完全不同的模型。但这是一个非常有前途和潜力的。总之,XLNet是一种通用的自回归预训练方法。18年底谷歌爸爸推出了bert,该模型一经问世就占据了nlp界的统治地位,如今CMU和google brain联手推出了bert的改进版xlnet。在这之前也有很多公司对bert进行了优化,包括百度、清华的知识图谱融合,微软在预训练阶段的多任务学习等等,但...原创 2020-02-22 15:39:09 · 871 阅读 · 0 评论 -
Transformer介绍
前言谷歌推出的BERT模型在11项NLP任务中夺得STOA结果,引爆了整个NLP界。而BERT取得成功的一个关键因素是Transformer的强大作用。Transformer模型最早的介绍来自谷歌的paper——《Attention is all you need》,最早是用于机器翻译任务,当时达到了STOA效果。Transformer改进了RNN最被人诟病的训练慢的缺点,利用self-att...原创 2020-02-18 23:31:44 · 7329 阅读 · 1 评论 -
word2vec理解
通俗理解word2vec https://www.jianshu.com/p/471d9bfbd72f原创 2019-07-25 23:46:48 · 283 阅读 · 0 评论