【机器学习】第2章 深度学习是什么

本文深入探讨深度学习与神经网络的基本概念,包括神经元的工作原理、常见的激励函数如Sigmoid、Tanh和ReLU,以及神经网络的结构组成。通过理解这些核心组件,读者将能更好地掌握深度学习的基础。

第2章 深度学习是什么

Table of Contents

第2章 深度学习是什么

2.1 神经网络是什么

2.1.1 神经元

2.1.2 激励函数

2.1.3 神经网络 

 

2.1 神经网络是什么

深度学习(deep learning)与神经网络,或称人工神经网络(artificial neural network, ANN)紧密相关。

神经网络是由生物神经细胞结构启发而研究出的一种算法体系。

2.1.1 神经元

最简单的 神经元,有一个输入,一个输出,表达的含义与普通函数相同

而目前使用的神经元通常有两部分组成,“线性模型”和“激励函数” 

(1)线性模型

假设神经元的函数表达为:f(x)=x+1,就是最简单的线性模型,其中x为一个一维向量,x也可以是5维向量,如图

 假设x是一个n维向量,建立一个有n个输入项的神经元f(x),展开f(x1,x2,...,xn),并且有输出函数值output,即output=f(x)

这就是神经元最核心部分对x做的线性处理,其中x是一个1*n的矩阵,w是n*1的权重矩阵,b是偏置项。

那么,如何获得权重?

一般是根据实际情况,通过“逆向”的方法得到,首先假设一些未知的权值w(n*1的矩阵),同时拥有大量的样本数据。

通过Loss函数来描述拟合和真实观测的差异之和,称之为残差

想要得到合适的w和b,需要函数Loss(w,b)尽可能小

2.1.2 激励函数

激励函数(activation function)也称激活函数,是神经元中重要组成部分。

激励函数在一个神经元中跟随在f(x)=wx+b函数之后,用于加入非线性的因素

1. Sigmoid 函数

或者 

 

 

当一个神经元被定义时,通常带有“线性模型”和“激励模型”两个部分收尾相接而成,前半部分接收外界进来的x向量作为刺激,经过wx+b的线性模型后又经过一个激励函数,最后输出。

 

Sigmoid激励函数,把最终值投射到0和1两个值上。通过这种方式引入非线性因素。其中“1”表示完全激活的状态,“0”表示完全不激活的状态,其他各种输出介于两者之间,表示其激活程度不同。

 2. Tanh 函数

在使用循环神经网络RNN(recurrent neural networks)会接触到

Tanh函数也称双曲正切函数,表达式如下

 Tanh函数把输入值投射到-1和1上。“-1”表示完全不激活,“1”表示完全激活,中间其他值是不同的激活程度的描述

3. ReLU 函数

ReLU(rectified linear units)函数大部分用于卷积神经网络CNN(convolutional neural networks),表达式y=max(x,0)

该函数在原地左侧部分斜率为0,在右侧则是一条斜率为1的直线,x<0时,输出为0;x>0时,输出为输入值

 

4. Linear 函数 

Linear激励函数实际应用并不多,因为如果网络线性层引入是线性关系,而激励层又是线性关系,那么网络不能很好地拟合非线性特性的关系,从而出现严重欠拟合现象

2.1.3 神经网络 

在一个神经网络中通常分为:输入层(input layer)、隐藏层(hidden layer,也称隐含层)、输出层(output layer)

(1)输入层在整个网络的最前端部分,直接接受输入的向量,它不对数据做任何处理的

(2)隐藏层可以有一层或多层

(3)输出层是最后一层,用来输出整个网络处理的值,该值可能是一个分类向量值,也可以是一个类似线性回归产生连续的值,也可能是复杂类型的值或者向量 

参考

高扬,卫峥.白话深度学习与TensorFlow[M].机械工业出版社:北京

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值