求强连通分量的著名算法:Kosaraju算法,Gabow算法和Tarjan算法。其中Kosaraju算法要对原图和逆图都进行一次DFS,而另外两种算法只要进行一次DFS即可。[i]文是介绍Gabow算法的论文。
17.1 Kosaraju算法
Kosaraju算法虽然要进行两次DFS,但是复杂度仍然是O(V+E),而且比较容易理解。
17.1.1 实例
PKU JudgeOnline, 2186, Popular Cows.
17.1.2 问题描述
有一群牛,总数为N。给出牛之间的M个仰慕关系,该关系可以传递,比如:1仰慕2,2仰慕3,那么1也仰慕3,如果一头牛被所有的牛都仰慕,那么它将是最受欢迎的牛,求出有多少牛是最受欢迎的。
先输入N、M,再输入M个仰慕关系。
17.1.3 输入
33
12
21
2 3
17.1.4 输出
1
17.1.5 分析
先对图求强连通分支,将所有强连通子图合并为一个结点,形成一个新图。
不难证明:在图中,如果将强连通分支看做一个结点,那么如果该结点出度不为0,则该SCC中的牛不是被所有牛仰慕的牛。反证法即可证明。
更进一步,不难证明:如果图中有牛被所有牛仰慕,那么有且只有一个出度为0的,且从图中的任何一个结点都能到达(连通性)的SCC,该SCC包含被所有牛仰慕的牛。反证法可以证明。
也可以知道:如果超过一个SCC的出度为0,那么连通性得不到保障。
可以证明:存在所有牛仰慕的牛,当且仅当出度为0的SCC有且只有一个。“仅当”很容易证明,下面证明“当”。假设只有一个SCC出度不为0时,但是却不存在所有牛仰慕的牛。那么必然意味着,有结点不能到达该SCC。因为如果所有结点都能到达该SCC,那么很自然的该SCC就是包含所有被其它所有牛仰慕的牛。在不能到达该SCC的结点中至少存在一个结点,其出度为0。因为如果所有结点的出度都不为0,那么所有结点必然形成一个环。形成环的结点在构造强连通分支的时候是要合并在一起的,矛盾。所以必然至少存在一个结点,其出度为0。假设和结果矛盾,故此,命题得证。
所以要求被所有牛仰慕的牛的个数,只需要求强连通分支,然后统计出度为0的个数。如果个数不为1则输出0。然后找到出度为0的那个SCC,。如果能就输出该SCC的牛的个数。
1.1.6 程序
#include <stdio.h>
#include <string.h>
#define G_size 100000 //边的最大个数
#define V_size 11000 //点的最大个数
typedef struct Graph
{
int id;//记录了结点的序号
int next;
}Graph;
typedef struct Edge
{
int s, e;
}Edge;
EdgeE[G_size];
GraphGA[G_size];
GraphGT[G_size];
int N, M;
int G_end;
int order[V_size];
int id[V_size];//在逆序的时候记录了SCC的序号
int vis[V_size];//遍历图的时候使用
int in[V_size];//计算反向SCC图的入度,也就是逆向之前的SCC图出度
int cnt, scnt, pos;
void Insert(int s, int e) //建立原图和逆图
{
int p;
p = s;
while(GA[p].next){
p = GA[p].next;
}
GA[G_end].id = e;
GA[p].next = G_end;
p = e;
while(GT[p].next){
p= GT[p].next;
}
GT[G_end].id = s;
GT[p].next = G_end;
G_end++;
}
void DFST(int x) //对原图进行搜索
{
int p, q;
vis[x] = 1;
p = GT[x].next;
while(p){
q = GT[p].id;
if(!vis[q])
{
DFST(q);
}
p = GT[p].next;
}
order[cnt++] = x;
}
void DFSA(int x) //对逆图进行搜索
{
int p, q;
vis[x] = 1;
id[x] = cnt;
p = GA[x].next;
while (p){
q = GA[p].id;
if(!vis[q])
{
DFSA(q);
}
p = GA[p].next;
}
}
void Solve() //主要过程
{
int s, e;
int i;
memset(GA, 0, sizeof(GA));
memset(GT, 0, sizeof(GT));
memset(E, 0, sizeof(E));
G_end = N + 1;
for (i = 0;i < M; i++)
{
scanf("%d%d", &s, &e);
E[i].s = s - 1;
E[i].e = e - 1;
Insert(s - 1, e - 1);
}
memset(vis, 0, sizeof(vis));
cnt = 0;
for (i = 0;i < N; i++)
{
if(!vis[i])
{
DFST(i);
}
}
memset(vis, 0, sizeof(vis));
cnt = 0;
for (i = N- 1; i >= 0; i--)
{
if(!vis[order[i]])
{
DFSA(order[i]);
cnt++;
}
}
for (i = 0;i < M; i++)
{
s = id[E[i].s];
e = id[E[i].e];
if (s!= e)
{
in[s]++;
}
}
scnt = cnt;
cnt = 0;
for (i = 0;i < scnt; i++){
if(in[i] == 0)
{
pos = i;
cnt++;
}
}
if (cnt !=1){
printf("0\n");
}
else{
cnt = 0;
for (i= 0; i < N; i++){
if(in[id[i]] == pos)
{
cnt++;
}
}
printf("%d\n",cnt);
}
}
int main()
{
while (EOF!= scanf("%d %d", &N, &M))
Solve();
return 0;
}
17.2 Kosaraju算法判断单向连通性
17.2.1 实例
PKU JudgeOnline, 2762, Going from u to v or from v to u?.
17.2.2 问题描述
给定N个点和这N个点之间的M个有向连接。如果两个点之间能从其中一个点到另一个点,那么这两个点就是单向连通的。问这N个点是不是都是单向连通的。
先输入测试个数。每个测试,先输入N、M,然后是M个连接。
17.2.3 输入
1
33
12
23
31
17.2.4 输出
Yes
17.2.5 分析
可以通过求强连通分支,简化图形,使得每两个结点只有单向连接。
然后使用DFS方法,对新图进行拓扑排序。
不难证明:如果原图是单向连通的,那么拓扑排序之后的结点必有指向下一个结点的连接。这是因为:假设没有这个连接,原图又是连通的,会拓扑排序的定义相违背。拓扑排序:对于有向无回路图,进行排序之和,如果包含边(u, v)那么u就出现在v之前。
同时不难证明:如果原图是单向连通的,那么新图有且只有一个结点的入度为0。首先,强连通分支将所有的回路聚合了,所以新图不存在回路,故此至少有一个结点的入度为0。其次,如果超过一个结点的入度为0,那么这两个结点肯定不能到达彼此。
故此,只需要先求强连通分支,建立新图,然后新图判断入度为0的结点个数是不是只有一个。然后以这个结点为根,DFS遍历新图,进行拓扑排序。最后,判断排序好的结点到下一个结点是不是有连接。
这里用到的强连通算法仍然是Kosaraju算法,但是由于超时,就对原来的程序进行了优化。主要的优化在于加入数组,记录每个结点的最后一个子结点的保存位置。典型的空间换时间。
1.2.6 程序
#include <stdio.h>
#include <string.h>
#include <iostream>
using namespace std;
#define G_size 10100 //边的最大个数
#define V_size 1010 //点的最大个数
typedef struct Graph
{
int id;//记录了结点的序号
int next;
}Graph;
typedef struct Edge
{
int s, e;
}Edge;
EdgeE[G_size];
GraphGA[G_size];
GraphGT[G_size];
int N, M;
int G_end;
int order[V_size];
int id[V_size];//在逆序的时候记录了边所属的SCC的序号
int vis[V_size];//遍历图的时候使用
int in[V_size];//计算SCC图的入度
int cnt, scnt, pos;
int lastSonGA[V_size];
int lastSonGT[V_size];
void Insert(int s, int e) //建立原图和逆图
{
int p;
p = lastSonGA[s];
GA[G_end].id = e;
GA[p].next = G_end;
lastSonGA[s] = G_end;
p = lastSonGT[e];
GT[G_end].id = s;
GT[p].next = G_end;
lastSonGT[e] = G_end;
G_end++;
}
void DFST(int x) //对逆图进行搜索
{
int p, q;
vis[x] = 1;
p = GT[x].next;
while(p){
q = GT[p].id;
if(!vis[q])
{
DFST(q);
}
p = GT[p].next;
}
order[cnt++] = x;
}
void DFSA(int x) //对原图进行搜索
{
int p, q;
vis[x] = 1;
id[x] = cnt;
p = GA[x].next;
while (p){
q = GA[p].id;
if(!vis[q])
{
DFSA(q);
}
p = GA[p].next;
}
}
int GSCC_end;
GraphGSCC[G_size];
int lastSonGSCC[V_size];
void InsertGSS(int s, int e) //建立原图和逆图
{
int p;
p = lastSonGSCC[s];
GSCC[GSCC_end].id = e;
GSCC[p].next = GSCC_end;
lastSonGSCC[s] = GSCC_end;
GSCC_end++;
}
int TopologcalOrder[V_size];
void DFS_GSS(int x)
{
int p, q;
vis[x] = 1;
p = GSCC[x].next;
while (p){
q = GSCC[p].id;
if(!vis[q])
{
DFS_GSS(q);
}
p = GSCC[p].next;
}
TopologcalOrder[cnt++] = x;
}
int linked[V_size][V_size];
void Solve() //主要过程
{
int s, e;
int p;
int i;
int fail;
memset(GA, 0, sizeof(GA));
memset(GT, 0, sizeof(GT));
memset(E, 0, sizeof(E));
for(i = 1;i <= N; i++){
lastSonGT[i] = i;
lastSonGA[i] = i;
}
G_end = N + 1;
for (i = 1;i <= M; i++)
{
scanf("%d%d", &s, &e);
E[i].s = s;
E[i].e = e;
Insert(s, e);
}
memset(vis, 0, sizeof(vis));
cnt = 0;
for (i = 1;i <= N; i++)
{
if(!vis[i])
{
DFST(i);
}
}
memset(vis, 0, sizeof(vis));
cnt = 0;
for (i = N- 1; i >= 0; i--)
{
if(!vis[order[i]])
{
cnt++;
DFSA(order[i]);
}
}
scnt = cnt;
for(i = 1;i <= cnt; i++){
lastSonGSCC[i] = i;
}
GSCC_end = cnt + 1;
memset(GSCC, 0, sizeof(GSCC));
memset(in, 0, sizeof(in));
for (i = 1;i <= M; i++)
{
s = id[E[i].s];
e = id[E[i].e];
if (s!= e)
{
InsertGSS(s, e);
linked[s][e] = 1;
in[e]++;
}
}
cnt = 0;
for (i = 1;i <= scnt; i++){
if(in[i] == 0)
{
pos = i;
cnt++;
}
}
fail = 0;
if (cnt !=1){
fail = 1;
}else{
memset(vis, 0, sizeof(vis));
cnt = 0;
DFS_GSS(pos);
for(i =scnt - 1; i > 0; i--)
{
s = TopologcalOrder[i];
e = TopologcalOrder[i - 1];
if(linked[s][e]== 0)// && linked[e][s] == 0)
{
fail = 1;
break;
}
}
}
if(fail ==1)
{
printf("No\n");
}else{
printf("Yes\n");
}
}
int main()
{
int cases;
scanf("%d",&cases);
for(; cases> 0; cases--){
scanf("%d%d", &N, &M);
Solve();
}
return 0;
}
17.3 实例
PKU JudgeOnline, 2186, Popular Cows.
PKU JudgeOnline, 2762, Going from u to v or from v to u?.
[i] Path-Based Depth-first Search for Strong and Biconnected Components.Harold N. Gabow. Information Processing Letters 74 (2000) 107-114.