Keras 入门基础知识+完整实例

按以下2部分写:

1 Keras常用的接口函数介绍

2 Keras代码实例


[keras] 模型保存、加载、model类方法、打印各层权重

1.模型保存
model.save_model()可以保存网络结构权重以及优化器的参数
model.save_weights() 仅仅保存权重

2.模型加载
from keras.models import load_model
load_model()只能load 由save_model保存的形式,将模型和weight全load进来

model.load_weights(self, filepath, by_name=False):
在加载权重之前,model必须编译好,即如下先执行以后。load_weights()和save_weights()配套用的

        metrics = ['accuracy']
        if self.nb_classes >= 10:
            metrics.append('top_k_categorical_accuracy')

       # self.input_shape = (seq_length, features_length)
        self.model,self.original_model = self.zf_model()
        optimizer = SGD(lr=1e-3)
        #必须先model.compile(),才能加载权重
        self.model.compile(loss='categorical_crossentropy', optimizer=optimizer,
                           metrics=metrics) #
        

3.sequential 和functional

序列式模型只能有单输入单输出,函数式模型可以有多个输入输出

4.model类

因为是继承, model对象有 container和layer的所有方法,可以用model对象访问下面三个类的所有方法

以上的具体区别,可以参考Keras教程:https://keras.io/zh/

Container的类属性

类属性,不是函数
        name
        inputs
        outputs
        input_layers
        output_layers
        input_spec 
        trainable (boolean)
        input_shape
        output_shape
        inbound_nodes: list of nodes
        outbound_nodes:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值