自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

顺其自然~专栏

思路决定出路,科技创造奇迹。

  • 博客(3144)
  • 收藏
  • 关注

转载 结构化 Prompt

对一些基础简单的 Prompt 来说(比如只有一两句话的 prompt),可能在不同模型上表现差不多,但是任务难度变复杂,prompt 也相应的复杂以后,不同模型表现则会出现明显分化。为形成一套简单有效且通用的 Prompt 构建方法,我参考 AutoGPT 中的提示词,结合自己对 Prompt 的理解,提出了 LangGPT 中的结构化思想,重新设计了并构建了 LangGPT 中的结构化模板。实践中,只要能满足你的需求,能够让你又快又好的编写出高性能 Prompt,就是好的 Prompt 方法!

2025-08-01 11:59:48 10

转载 ChatGPT在数据情报分析领域的应用探索

我们只需要通过特定的提示词,让它输出想要的内容,再录入本地执行,获得最终的结果。对工具的使用,正是人类优越性的体现。通过这种方式,能够让初级水平的分析人员,也能轻松写出高级水平人员才能完成的“复杂的”函数命令或Python脚本、绘制出专业的数据图表。然而,尽管ChatGPT在数据分析领域具有巨大的潜力,但对于公共安全领域来说,数据大多都是涉密的,不允许被发布到互联网中。,在面对超复杂的数据分析场景, ChatGPT提供的支撑具有局限性,此时还需要借助专业的数据分析工具,比如火眼等。

2025-08-01 10:53:13 18

转载 【Agent】基于大模型进行结构化信息提取优化策略

如果有多个参考摘要,对每个参考摘要分别计算召回率,然后取最大值作为最终的ROUGE-N召回率。5、

2025-08-01 09:51:59 13

转载 使用本地大模型从论文PDF中提取结构化信息

本文探讨了利用大语言模型(LLM)从学术论文PDF中批量提取结构化信息的方法。相比传统正则表达式,LLM在灵活性、上下文理解和扩展性方面具有明显优势。文章详细介绍了工作流程:通过Ollama服务部署本地LLM模型(llama3.1),设计专业提示词模板,从PDF中提取标题、作者、摘要等关键信息并转换为JSON格式。实验以经典论文《Attention Is All You Need》为例,展示了完整的代码实现方案,包括环境配置、提示工程、异常处理和批量处理等功能。该方法为科研人员提供了高效的非结构化数据处理工

2025-07-31 17:50:05 33

转载 透明屏介绍

透明屏可做到屏幕如玻璃一般透明,保持透明度的同时又能保证动态画面的色彩丰富程度和显示细节。

2025-07-31 15:53:45 22

转载 结构化提示词:让AI高效完成复杂任务的“编程语言”

在人工智能时代,提示词(Prompt)已成为连接人类意图与AI能力的核心媒介。,其设计过程堪比编写程序代码——通过将重复要素模块化、流程节点标准化,实现复杂任务的精准拆解与稳定输出。与传统自然语言交流不同,:如同定义函数作用域,明确AI的"身份-能力"边界:像编写算法流程,设定"目标-约束-步骤"的完整执行链:规定返回值的"格式-示例",确保结果可预期、可复用:一个精心设计的提示词可替代数十次低效对话通过固定逻辑框架消除AI输出的随机波动:模块化提示词成为可迭代的"数字资产"

2025-07-31 11:57:09 68

转载 结构化提示词Prompt方法论

结构化Prompt是一种精心设计的输入模板。结构化将信息以一种特定的格式组织起来,以便人工智能系统能够更准确地理解和处理这些信息。这种模板通常包含一系列预定义的字段和指示,用于引导AI生成特定风格或格式的输出。通过使用结构化Prompt,用户可以更有效地与AI沟通,同时AI也能够提供更准确、更符合用户需求的回答。这种模板有助于减少歧义,提高沟通的效率,并确保信息的清晰和有序。

2025-07-31 11:18:11 16

转载 Prompt老跑偏?教你写出模型真正听得懂的提示词

为什么有些人随手写个 Prompt 就能生成一款小游戏、一个运营文案,甚至一整个功能代码,而自己试了半天,结果不是风马牛不相及,就是跑偏到离谱?问题很可能就出在提示词的“”上。随便说几句话和有条理地引导模型,其实是两回事。结构化提示词,说白了就是把你想让模型干的事,拆清楚、说明白、讲具体。只有写得准,模型才听得懂、干得对。在本篇文章中,就来聊聊怎么写好结构化提示词,让大模型更乖乖按你的想法工作。本文摘自《智能体设计指南》投稿 | 机械工业出版社出品 | CSDN(ID:CSDNnews)

2025-07-31 11:04:07 21

转载 使用LLM大模型进行结构化实体抽取

利用大语言模型进行命名实体提取不仅仅是一次技术演进,更是我们处理信息方式的一场革命。而当文档是图片或复杂的 PDF 时,情况就更棘手了,需要额外的光学字符识别(OCR)库,这又会引入新的潜在错误。这种方法的简便性带来了无限可能。企业中的每一份非结构化文档都存在自动化的机会,每一个手动录入流程都有优化的空间。与传统模型不同,大语言模型能自然适应文档中的各种变化。大语言模型能自然处理不同语言的文档,而传统方法则需要特定的模型才能实现这一点。一份布局不同的合同,甚至是较差的图像质量,都可能影响提取结果。

2025-07-31 08:56:46 36

转载 混合专家模型(MoE)深度解析

在MoE模型中,通过增加专家的数量,可以在不显著增加整体计算成本的情况下,扩大模型的参数量和模型容量。例如,Eigen、Ranzato和Ilya等人在他们的研究中,将MoE模型与深层神经网络相结合,通过在不同的网络层级中设置专家模型,使得模型能够更好地处理复杂的输入数据和任务,同时保持较高的计算效率。例如,在处理包含数十亿甚至数百亿条数据的自然语言处理任务时,MoE模型可以通过分布式训练和推理,将不同的专家分配到不同的计算节点上,实现高效的并行处理,大大缩短了训练时间,提高了模型的训练效率。

2025-07-30 17:18:36 87

原创 LLM中的激活是什么意思

在大语言模型(LLM)中,“激活”(Activation)是一个核心概念,它既指神经元或层的输出值(数值结果),也涉及模型在推理或训练时的动态计算过程。在LLM的神经网络中,每一层(如全连接层、自注意力层)的神经元会对输入数据进行计算,并输出一个数值结果,这个结果被称为。它是模型对输入数据的中间表示,反映了神经元对输入特征的响应程度。:输入数据与权重矩阵相乘,加上偏置项,得到线性组合结果。:线性结果通过非线性函数(如ReLU、GELU、Swish)进行变换,引入非线性能力,使模型能够学习复杂模式。

2025-07-30 16:31:31 845

转载 Markdown教程

Markdown是一种轻量级标记语言,用简单的符号(如[]()等)快速排版文字,专注于内容而非格式。

2025-07-30 11:24:31 37

转载 “提示词” vs “提示词工程” vs “上下文工程”

提示词很好理解,就是给 AI 模型的输入文本,就是你直接向模型输入的问题或指令。比如你让 ChatGPT 总结一段文本、调用模型 API 传入提示词去翻译一篇文章等等。提示词是一段文本,有点像代码。提示词工程是一个过程,系统化地设计、测试、优化提示词的过程。就像软件工程,我们为了完成某个需求,要有一套科学的方法来帮助完成软件开发的过程,有方法论(比如敏捷开发),要使用工具,要保证质量,不断迭代,最终交付软件,或者说代码。举个例子比如我们要有个提示词帮助翻译英文文章到中文。

2025-07-30 10:47:08 35

转载 上下文工程(Context Engineering)综述:大模型的下一个前沿

核心问题:如何形式化描述LLM与上下文的交互?论文突破性地将上下文 ( C ) 定义为动态结构化信息组件的集合,而非静态字符串。关键数学原理与提示工程的本质区别维度提示工程上下文工程模型静态字符串动态结构化组装目标优化单次提示系统级函数优化状态性无状态显式记忆与状态管理扩展性长度增加导致脆弱性模块化组合管理复杂度。

2025-07-30 10:06:52 40

转载 大模型上下文工程(context engineering)

在实践中,最先进的AI应用(如 Palantir AIP、Databricks Mosaic AI Agent Framework 等)往往会融合以上所有范式,构建出一个能够根据任务需求,灵活地检索静态知识、调用实时工具、并保持长程对话记忆的复杂系统。百度安全验证。

2025-07-30 09:44:37 32

转载 大模型上下文工程(Context Engineering)详解

上下文工程是长文本时代的核心基础设施——它让大模型从“短文本专家”蜕变为“复杂知识管家”。与提示工程结合时,可构建完整的输入优化链:提示工程控制“思维方向” + 上下文工程提供“思维素材”。上下文工程作为大模型时代的新兴技术领域,为我们提供了有效利用长上下文能力的系统性方法。它不仅仅是技术的升级,更是思维方式的转变——从关注单一指令的优化转向整个信息空间的管理和利用。大模型上下文工程(Context Engineering)详解 - 53AI-AI知识库|大模型知识库|大模型训练|智能体开发。

2025-07-30 09:24:23 36

转载 大模型效果差?可能你输在了上下文工程!

人类再聪明,也受环境所限;模型再强大,亦为上下文所困。面对大模型的浪潮,一个根本性的选择摆在我们面前:是,还是?造模型:需要基础训练和模型优化。需要AI研究员,聚焦于基础训练与模型优化,解决的是领域理解的问题。用模型:需要应用增强模型能力。需要工程师,聚焦应用增强层落地,解决的是领域流程的问题。现在也不用想了,造模型的就这么几家大玩家,广大的人民群众都转到用模型的赛道上,这也是智能体为什么火的原因之一。其实选哪种方式,最终的决策在ROI投入产出比。显然从ROI角度考量,

2025-07-30 08:38:50 18

转载 AI深度探秘:4个常用参数,让你轻松驾驭聊天大模型

各聊天大模型中都有个参数,决定了每次大模型回复时能说最多多少个字的内容,这个参数就是“Max_Tokens”。说到这个参数,不得不先说一下“Token”这个词。

2025-07-29 17:03:24 35

转载 《Google Prompt Engineering》白皮书

你不需要成为数据科学家或机器学习工程师 - 每个人都可以编写提示。在考虑大语言模型的输入和输出时,文本提示(有时伴随着其他模态,如图像提示)是模型用来预测特定输出的输入。你不需要成为数据科学家或机器学习工程师 - 每个人都可以编写提示。然而,编写最有效的提示可能很复杂。提示的许多方面都会影响其效果:你使用的模型、模型的训练数据、模型配置、你的措辞、风格和语气、结构以及上下文都很重要。因此,提示工程是一个迭代过程。不充分的提示可能导致模糊、不准确的响应,并可能阻碍模型提供有意义的输出。

2025-07-29 14:59:40 33

转载 Google LLM prompt engineering(谷歌提示词工程指南)

当你与大型语言模型(如Gemini)交流时,你输入的文字就是"提示",AI会根据这些提示生成回答。提示工程就是设计高质量提示的过程,引导AI产生准确的输出。小贴士: 你不需要成为数据科学家或机器学习工程师 — 任何人都可以学习如何写好提示!大型语言模型(LLM)是一个预测引擎。当你输入文字时,模型会根据它训练过的数据预测下一个词应该是什么。通过精心设计的提示,你可以引导模型生成更符合你期望的回答。为什么提示工程很重要?好的提示让AI给出准确、有用的回答不好的提示可能导致模糊、不准确的回答。

2025-07-29 14:10:44 52

转载 RAG中的检索、召回以及排序

是检索的第一步,核心目标是“尽可能多地找到相关文档”,即使包含部分冗余。例如:用关键词“番茄+鸡蛋”找到100篇菜谱,再用语义匹配筛选出30篇最相关的。技术本质是通过算法(如关键词匹配、语义相似度计算)从文档库中“捞”出可能相关的段落,供大模型后续加工。召回的两种实现方案1)关键词匹配:像“Ctrl+F搜索”:直接匹配问题中的关键词(如“AI产品经理”),适合找专有名词和明确术语。但缺点是无法理解语义,比如搜“人工智能”可能漏掉标“AI”的文档。2)语义搜索。

2025-07-29 11:23:45 37

转载 XML、YAML还是Markdown?提示词结构的效用之分

想象一个复杂的搜索指令,你希望AI帮你筛选简历。

2025-07-29 10:35:19 22

转载 什么是需求洞察?用户说的要不要都做

这是一本书,也是张此前一次演讲的文字总结。我摘抄如下:我做了一个实验。之前我发现,我在计算机前写微博,想不到要写什么好时,更多是看别人的微博来评论一下或者转发一下而已。这是“我在计算机前”这个“环”下的反应。然后有一天我想,如果我不在计算机前, “环境”怎么刺激我呢?当我走在路上的时候,会有很多想法,我把它们记录下来,并整理成微博发出。我发现,我在路上记录的想法,和我在计算机前发的微博是完全不同的。在计算机前更多时候是评论和转发,而在路上,受到很多现实的刺激,想法很活跃也很跳跃,跟现实很贴近。从这点来看,朋

2025-07-29 09:50:51 20

转载 Python读写各类数据文件

Python 读写 YAML文件。

2025-07-28 14:29:27 35

转载 什么是边缘计算盒子?

以前做安全生产智能监控系统都是用海康的摄像头,通过后台的智能管理平台和超脑来完成算法分析,对人的不安全行为(吸烟、不戴安全帽)进行自动报警。拓扑图如下:图1 海康智能分析摄像头组网拓扑这种方案应用场景很广,唯一的缺陷是造价较高,一方面是海康的智能摄像头价格较贵(2000-3000元),另一方面是管理后台根据算法种类的多少还需要增加相应的管理模块(单独收费),并且整个系统不兼容其他品牌的摄像头(如大华、宇视、天地伟业等)。

2025-07-28 14:06:15 85

转载 PyV8: 在Python中运行JavaScript的利器

Python作为编程世界中的一股清流,不仅有着丰富而强大的标准库,还有着形形色色的第三方库来丰富其生态。在众多第三方库中,PyV8是一个将Google的V8 JavaScript引擎嵌入Python环境的库,它允许Python代码直接执行JavaScript代码。这不仅意味着可以利用V8引擎的速度优势,还能够在Python项目中便捷地引入JavaScript的诸多功能。本章节将从PyV8库的基础概念出发,带你了解其背后的技术原理以及主要用途。

2025-07-25 17:49:40 44

转载 java调用js文件的两种常用方法示例(支持V8引擎

在日常逆向中,一些前端的加密代码用java复现出来比较难,所以经常需要调用js文件来实现加密操作,接下来将介绍两种常用调用js的思路,第一种适用于普通js文件,第二种则适用于比较新的V8引擎。在实现的过程中,也会展示可能遇到的问题以及解决办法,废话不多话,正文开始!

2025-07-25 17:26:50 41

原创 docker ps 报错如下:permission denied while trying to connect to the Docker daemon socket at unix:///var/

这个错误表明当前用户没有权限访问 Docker 守护进程的 Unix 套接字文件。如果路径异常,检查 Docker 配置文件(如。:此方法会降低安全性,仅建议临时测试使用。如果不存在,先安装 Docker(1)Docker 守护进程默认以。但长期使用不推荐(安全性较低)。组成员的用户有权访问该套接字。(或重启系统),使组权限生效。如果不想修改用户组,可以通过。⚠️ 避免在生产环境中使用。组,平衡便利性与安全性。

2025-07-25 15:36:08 405

原创 Docker容器导出并导入镜像

使用当你需要备份或迁移整个镜像,包括其历史记录和元数据时使用。使用当你只需要导出容器的文件系统,用于迁移容器状态但不包括其运行时数据时使用。选择哪种方法取决于你的具体需求。如果你只是想迁移一个完整的应用环境,包括配置和环境变量等,使用更为合适。如果你只是想迁移容器的内容和配置文件,不关心运行时的动态数据,那么使用更为合适。

2025-07-25 15:08:45 887

转载 electorn+vue3项目启动后报错unsafe-eval,如何去除提醒

AI生成项目javascript运行。

2025-07-25 14:06:08 30

转载 在JavaScript中eval() 和 new Function() 的执行上下文差异及安全防护

对比项eval()执行上下文当前作用域(与调用者共享)新的函数作用域(仅全局作用域)访问外层变量可以(直接访问函数/块级作用域)不可以(仅能访问全局变量)修改外层变量可以(直接修改函数/块级作用域变量)不可以(只能修改全局变量)this指向与调用者的this一致非严格模式:全局对象;undefined安全风险极高(可访问所有作用域变量)较高(但无法访问局部变量)性能较差(破坏引擎优化)较差(每次创建新函数)适用场景极少数(如必须操作当前作用域)动态创建函数(需隔离作用域)1)能不用就不用。

2025-07-25 11:28:30 22

原创 nodejs 执行动态脚本

在 Node.js 中执行动态脚本可以通过多种方式实现,具体取决于你的需求和你希望执行的脚本的类型。

2025-07-25 11:06:45 261

转载 Electron中的流程

Electron 继承了来自Chromium 的多进程架构,这使得此框架在架构上非常相似于一个现代的网页浏览器。

2025-07-25 10:59:32 34

转载 arm64系统运行 electron AppImage 报错

打包electron arm版本 electron-builder --linux --arm64。

2025-07-25 10:35:02 29

转载 在Linux平台使用AppImage打包应用程序

运行的时候选择运行,卸载的时候也只需要删除文件即可(当然可能存在配置文件,对于该文件,我的建议是程序在编写时,将当前目录切换到AppImage文件所在的目录,并且将一切数据都放置于此,这时删除的时候就可以打包删除了)。没错,只是不尽如我意。打包AppImage需要事先创建一个目录结构用来存放各种程序资源以及AppImage所要求的一些文件,其实这个目录结构也好说,创建一个以.AppDir为后缀的目录,名字使用软件名,然后在其中创建对应的AppRun,.desktop文件就可以,但是你需要事先准备一个图标。

2025-07-25 10:16:13 32

转载 electron-安全

作为网络开发人员,我们通常喜欢浏览器的强大安全网,因为这样我们编写的代码风险较小。我们的网站在沙盒中被赋予了有限的权力,我们相信我们的用户享受到的是一个由大型工程师团队打造的浏览器,它能够快速应对新发现的安全威胁。当使用 Electron 时,很重要的一点是要理解 Electron 不是一个 Web 浏览器。它允许您使用熟悉的 Web 技术构建功能丰富的桌面应用程序,但是您的代码具有更强大的功能。JavaScript 可以访问文件系统,用户 shell 等。

2025-07-24 16:36:54 31

转载 Renderer Process 模块 - contextBridge

History在隔离的上下文中创建一个安全的、双向的、同步的桥梁。

2025-07-24 15:54:27 37

转载 应用篇:最经典的人工智能商业案例

我们总结“啤酒与尿布”的案例。首先,前提是你有可用的数据。企业要用好AI,第一步不是去找大模型,而是反过来思考:我的业务有没有数字化基础?能不能捕捉到关键行为数据?数据有没有足够的结构化和场景化?——这是“AI是否可用”的前提,更是“AI能走多远”的地基。但有了数据还不够。其次,人工智能之所以迷人,是因为它可以发现那些人类无法轻易识别的隐含规律。不管是父亲买完尿布后顺手带走的啤酒,还是夜晚独自浏览绘本的父母背后潜藏的育儿焦虑,AI都能从中找出模式,让我们更早、更准地感知需求、预测行为、设计产品。

2025-07-23 09:21:00 297

转载 新闻掘金:让我提升十倍效益的智能体

智能体(Agent)这个词越来越火,但很多人理解还停留在“对话机器人”。真正的智能体,是具备环境感知、任务规划、自主执行能力的“数字助手”。用一句更白话的话说:“过去你跟 AI 聊天是问答,现在你跟智能体配合是协作。它不是等你发指令,而是帮你主动“盯盘、做事、报告”。这个项目虽然小,但意义很大。学人工智能,不是从模型开始,而是从问题开始;小需求、小流程、小痛点,是智能体应用最好的落脚点;智能体不是遥不可及的“黑科技”,而是你工作流程的一部分;

2025-07-23 08:55:52 44

转载 人工智能的本质

人工智能的本质,就是在做两件事:✅ 分类:找出不同事物间的界限。✅ 判断:根据已有规律,给出最可能的答案。而在这背后,有几条必须记住的真相:✅ AI 不追求绝对正确,而是追求“多数正确”。✅ 单一视角容易失真,多维判断才更接近真相。✅ 再聪明的 AI,本质也是数据+参数的产物。✅ 真正学好 AI,最重要的是理解背后的逻辑,而不是被复杂的公式吓退。想学人工智能,不一定要从数学公式入手。先明白它的本质,你就已经赢在了起跑线上。理论篇:人工智能的本质。

2025-07-22 14:15:17 35

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除