图论理论基础

图论理论基础 | 代码随想录

图的基本概念

二维坐标中,多个点连成的线就构成了图。图也可以是一个节点,甚至没有节点(空图)。

图的种类

整体上一般分为有向图和无向图。

有向图是指图中边是有方向的,无向图是指图中边没有方向。

加权有向图,就是图中边是有权值的。

无向图中有几条边链接该节点,该节点就有几度。

在有向图中,为了区分边的方向,每个节点有出度和入度。

出度:从该节点出发的边的个数。

入读:指向该节点的边的个数。

连通性

在途中表示节点的连通情况。

连通图

在无向图中,任何两个节点都是可以到达的,称之为连通图。

如果有节点不能到达其他节点,则为非连通图。

强连通图

在有向图中,任何两点是可以互相达到的,成为强连通图。

有向图中要注意边的方向,节点1可以到达节点5,但是节点5不能到节点1。

强连通图是在有向图中任何两个节点都可以互相到达。

下面这个图就是一个强连通图。

连通分量

在无向图中,极大连通子图称为该图的一个连通分量。

节点1、2、5和节点2、4、6分别构成两个子图,这个子图中的所有节点都是相互可达到的。二者都是这个无向图的连通分量。但是节点3、4构成的无向图就不是该无向图的连通分量。(必须是极大连通子图才能构成连通分量)

强连通分量

在有向图中极大连通子图称为该图的强连通分量。

 节点1-5构成强连通分量,但是节点6、7、8不构成强连通分量,因为这不是强连通图,节点8不能到达节点6。

节点1、2、5构成的子图也不是强连通分量,因为这不是极大图。

图的构造

一般使用邻接表、邻接矩阵或者用类来表示。

邻接矩阵

用二维数组来表示。

例如:grid[2][5]=6,表示节点2链接节点5为有向图,节点2指向节点5,边的权值为6。

如果想表示无向图,即:grid[2][5]=6, grid[5][2]=6,表示节点2与节点5相互连通,权值为6。

申请n(节点数)的空间,如果边少、节点多的情况,会导致申请过大的二维数组,造成空间浪费。

寻找节点连接情况的时候,需要遍历整个矩阵,n*n的时间复杂度,造成时间浪费。

邻接矩阵的优点:

  • 表达方式简单,易于理解
  • 检查任意两个顶点间是否存在边的操作非常快
  • 适合稠密图,在边数接近顶点数平方的图中,邻接矩阵是一种空间效率较高的表示方法。

缺点:

  • 遇到稀疏图,会导致申请过大的二维数组造成空间浪费 且遍历 边 的时候需要遍历整个n * n矩阵,造成时间浪费

邻接表

邻接表使用数组+链表的方式来表示。邻接表是从边的数量来表示图,有多少边才会申请对应大小的链表。

这里表达的图是:

  • 节点1 指向 节点3 和 节点5
  • 节点2 指向 节点4、节点3、节点5
  • 节点3 指向 节点4
  • 节点4指向节点1

邻接表的优点:

  • 对于稀疏图的存储,只需要存储边,空间利用率高
  • 遍历节点连接情况相对容易

缺点:

  • 检查任意两个节点间是否存在边,效率相对低,需要 O(V)时间,V表示某节点连接其他节点的数量。
  • 实现相对复杂,不易理解

图的遍历方式

图的遍历方式基本是两大类:

  • 深度优先搜索(dfs)
  • 广度优先搜索(bfs)

二叉树的递归遍历,是dfs 在二叉树上的遍历方式。

二叉树的层序遍历,是bfs 在二叉树上的遍历方式。

dfs 和 bfs 一种搜索算法,可以在不同的数据结构上进行搜索,在二叉树章节里是在二叉树这样的数据结构上搜索。

而在图论章节,则是在图(邻接表或邻接矩阵)上进行搜索。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值