
pytorch
文章平均质量分 95
fydw_715
fydw_715
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深入解析 PyTorch 中的 torch.distributions模块与 Categorical分布
模块为 PyTorch 用户提供了丰富且灵活的概率分布工具,类是其中处理离散类别分布的重要成员。通过使用,我们可以方便地进行随机采样、概率计算和模型的概率化处理。这对于强化学习、生成模型、自然语言处理等需要处理离散随机变量的领域尤为重要。在实际应用中,善用模块,可以使模型更具表达力和灵活性。希望本文能帮助读者更好地理解和使用 PyTorch 中的概率分布工具,为深度学习模型的构建和研究提供有力支持。参考资料PyTorch 官方文档 - Distributions。原创 2025-04-28 17:00:52 · 970 阅读 · 0 评论 -
深入理解Softmax函数及其在PyTorch中的实现
Softmax函数在机器学习和深度学习中,被广泛用于多分类问题的输出层。它将一个实数向量转换为概率分布,使得每个元素介于0和1之间,且所有元素之和为1。原创 2025-04-11 15:55:15 · 1190 阅读 · 0 评论 -
PyTorch :梯度详解
本文将详细讲解 PyTorch 中 `torch.Tensor` 的梯度是如何工作的,以及如何使用它来进行自动求导。原创 2025-03-05 16:39:29 · 1568 阅读 · 0 评论 -
什么是模型状态字典(state_dict)?
什么是模型状态字典(state_dict)?状态字典和模型权重的区别是什么?.pth 文件和状态字典的关系?原创 2025-02-25 10:46:56 · 1221 阅读 · 0 评论 -
Pytorch nn.Module详解
torch.nn.Module 是 PyTorch 中所有神经网络模块的基类,提供了构建神经网络模型的基本框架。通过继承 nn.Module,可以方便地创建自定义的神经网络模块,实现复杂的神经网络结构。下面详细介绍 nn.Module 的核心概念、使用方法和注意事项。原创 2025-02-19 09:42:34 · 1768 阅读 · 0 评论 -
PyTorch 激活函数及非线性变换详解
激活函数是深度学习模型的重要组成部分,它们引入非线性,从而使模型能够更好地拟合复杂的数据模式。本文将详细介绍激活函数的作用、常见类型、经典应用示例,并比较它们的优缺点。原创 2024-09-17 14:21:17 · 2319 阅读 · 0 评论 -
PyTorch 池化层详解
池化层(Pooling Layer)在卷积神经网络(CNN)中是关键组成部分,主要用于降维和减少计算量,增强模型的鲁棒性。池化层包括最大池化(Max Pooling)、平均池化(Average Pooling)和全局池化(Global Pooling)。最大池化通过选取池化窗口内的最大值保留显著特征,平均池化计算窗口内的平均值以减少噪声,全局池化将特征图缩小为单个值以简化模型结构和减少参数。池化层通过降维、特征提取和抑制噪声显著提高了模型的计算效率和鲁棒性。原创 2024-09-17 13:11:46 · 2033 阅读 · 0 评论 -
PyTorch 全连接层(Fully Connected Layer)详解
全连接层(Fully Connected Layer)是神经网络中最基本和广泛使用的层类型,广泛应用于图像分类、文本处理、回归分析等任务中。本文详细介绍了全连接层的基本概念、PyTorch中的实现、输入和输出维度变化、主要解决的问题及典型应用场景。全连接层通过线性变换和非线性激活函数,对输入特征进行变换和抽象,提取更高层次的特征。训练过程中,权重矩阵和偏置向量通过反向传播算法进行更新,优化模型性能。全连接层在图像分类、文本分类、回归任务及多层感知器(MLP)中有广泛应用,理解其工作原理和应用场景对于构建高效原创 2024-09-03 18:10:16 · 15358 阅读 · 2 评论 -
PyTorch 卷积层详解
本文详细介绍了 PyTorch 的二维卷积层(`nn.Conv2d`),涵盖其参数设置、卷积核的作用、特征图的生成过程,以及如何根据任务需求设置 `out_channels` 参数。通过示例代码展示了如何读取 JPEG 图片、进行卷积操作并保存结果为新图片。解释了 `stride` 和 `padding` 参数对特征图大小的影响,为什么使用 Sigmoid 函数处理输出,以及每个卷积核的独立性和特征提取能力。本文旨在帮助读者更好地理解和应用 PyTorch 的卷积层,构建高效的深度学习模型。原创 2024-09-03 09:13:37 · 1663 阅读 · 0 评论 -
Pytorch :张量(Tensor)详解
张量(Tensor)是深度学习和科学计算中的核心概念,表示多维数组,用于描述标量、向量、矩阵和高阶数据结构。张量支持各种数学运算和聚合操作,如加法、乘法、转置、求和、均值等。PyTorch 提供了多种创建张量的方法,包括从 Python 列表、元组和 NumPy 数组创建,以及生成随机数(均匀分布、正态分布等)。为了确保结果的可重复性,可以设置随机种子。张量还可以在不同设备(CPU、GPU)上进行计算,利用 GPU 加速深度学习模型的训练和推理。利用张量及其操作,深度学习框架(如 PyTorch)能够实现高原创 2024-08-29 09:53:07 · 3353 阅读 · 0 评论 -
PyTorch概述
PyTorch 是一个开源的机器学习框架,由 Facebook 的人工智能研究团队开发。它广泛用于深度学习和神经网络的研究和开发。PyTorch 以其动态计算图、灵活性和简单易用的接口而闻名,深受研究人员和开发者的喜爱。以下是 PyTorch 的一些重要模块及其功能: 包含了大量常用的神经网络层,这些层可以直接实例化并使用。以下是一些常用的层:PyTorch nn.Module详解PyTorch 卷积层详解PyTorch 全连接层(Fully Connected Layer)详解PyTorch 深度原创 2024-08-28 15:05:43 · 1412 阅读 · 0 评论 -
Matplotlib 详解
在本篇文档中,我们详细介绍了如何使用 Matplotlib 进行数据可视化,从基础的安装和配置到各种复杂的图表类型和高级功能。通过这些示例,你可以掌握 Matplotlib 的基本用法,并在实际项目中灵活运用它来进行数据可视化。原创 2024-08-28 08:49:29 · 820 阅读 · 0 评论 -
NumPy介绍
NumPy(Numerical Python)是Python的科学计算库,提供高性能多维数组和矩阵运算功能,以及丰富的数学函数库。核心功能包括多维数组对象ndarray、广播机制、向量化运算、丰富的数学函数库和高级索引与切片。NumPy广泛应用于数据分析、科学计算和图像处理等领域,具有高性能、易于使用和强大的社区支持。NumPy是Python科学计算生态系统的基础,许多其他库(如SciPy、Pandas、Matplotlib、TensorFlow等)都依赖于NumPy进行底层数据处理。安装NumPy可以通过原创 2024-08-26 19:57:40 · 1083 阅读 · 0 评论