Python 列表操作的计算复杂度分析
1. Python 列表元素访问
在计算机中,实验表明计算机随机存取存储器(RAM)的所有位置都能在相同时间内被访问。Python 列表是连续内存位置的集合,“连续”意味着列表的内存位置在 RAM 中是连续排列的。
为了验证计算机 RAM 的这种特性,我们可以编写程序对不同大小的 Python 列表进行测试,以确定从列表中随机元素检索或存储值的平均时间。该程序主要测试两个理论:
- 列表的大小不影响列表中的平均访问时间。
- 列表内任何位置的平均访问时间相同,与该位置在列表中的具体位置无关。
为了测试这两个理论,我们需要对列表中值的检索和存储进行计时。Python 中的 datetime
模块可以用来记录当前时间,通过减去两个 datetime
对象,我们可以计算出程序中任何操作的微秒数。以下是测试列表访问并记录访问时间的 Python 代码:
import datetime
import random
import time
def main():
# Write an XML file with the results
file = open("ListAccessTiming.xml","w")
file.write('<?xml version="1.0" encoding="UTF-8" standalone="no" ?>\n')
file.write('<Plot title="Average List Elemen