conda虚拟环境安装CUDA和CUDNN
官网教程
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#conda-installation
1. 背景
深度学习用显卡训练的时候,需要安装与显卡对应的cuda和cudnn。但不同的项目所支持的pytorch版本是不一样的,而pytorch版本和cuda版本之间又是互相依赖的,所以如果可以灵活地在不同cuda版本间切换将是非常方便的。anaconda就可以实现这个功能。我们可以在conda创建的不同虚拟环境中安装不同的cuda和cudnn版本,以此来实现不同cuda版本间的切换。
环境1:
环境2
2. 使用Conda安装CUDA
2.1查看自己显卡驱动支持的最高cuda版本 输入nvidia-smi指令来查看。
- https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
- 比如我的显卡驱动版本是510.108.03,可安装的CUDA最高版本为11.6。(可能是推荐版本,我安装了11.8)
<