db-gpt docker部署进坑

本文讲述了在使用Docker时遇到的问题,如容器启动后关闭及日志中的ValueError,发现是由于缺少text2vec模型。作者指导如何查看日志并指出需要从DB-GPT的quickstart中下载embedding模型以解决此问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.docker 不支持gpu,参考之前文章

2.docker 容器启动就关闭,docker ps -a 查看容器状态为exited 停止

定位问题:

(1) 查看日志

docker logs dbgpt -f

(2) 日志错误最后一行:

ValueError: Path /app/models/text2vec-large-chinese not found

发现没有embedding模型,就启动docker image时,docker 因为是ipc模型,映射到系统环境目录下model目录找不到text2vec。。。模型

查看dbgtp的quickstart说明Quickstart | DB-GPT, 需要自行下载text2vec。

(3)下载embedding模型(略)

如果不知道怎么下载,可以私新我

### DB-GPT Docker 配置与镜像 对于涉及DB-GPTDocker配置和镜像,当前提供的参考资料并未直接提及具体的细节。然而,在构建任何基于Docker的应用程序时,通常会遵循一系列标准实践来创建适合特定应用需求的环境。 #### 创建自定义Dockerfile用于DB-GPT 为了适配DB-GPT项目的需求,可以编写一个定制化的`Dockerfile`: ```dockerfile FROM python:3.9-slim-buster WORKDIR /app COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt COPY . . CMD ["python", "db_gpt_app.py"] ``` 此示例假设存在名为`requirements.txt`的依赖列表以及启动应用程序所需的入口脚本`db_gpt_app.py`[^1]。 #### 使用多阶段构建优化镜像大小 通过采用多阶段构建技术,可以在不影响功能的前提下显著减小最终生成的容器映像体积: ```dockerfile # 构建阶段 FROM python:3.9-slim-buster AS builder WORKDIR /build COPY ./src/requirements.txt . RUN pip wheel --wheel-dir=/wheels -r requirements.txt # 运行时阶段 FROM python:3.9-alpine WORKDIR /app COPY --from=builder /wheels / RUN pip install --no-index --find-links=file:///wheels \ && rm -rf /wheels COPY src/ . CMD ["python", "-u", "./main.py"] ``` 这种方法不仅有助于提高部署效率,还能增强安全性并减少资源消耗[^2]。 #### 利用官方仓库获取预构建镜像 如果社区已经提供了针对DB-GPT项目的官方或第三方支持,则可以直接从公共注册表拉取相应的镜像而无需自行编译: ```bash docker pull dbgpt/db-gpt-app:latest ``` 这一步骤简化了前期准备工作,并允许团队专注于核心业务逻辑而非基础设施搭建上[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值