布隆过滤器概念及其公式推导
公式推导内容转自博客 https://blog.csdn.net/houzuoxin/article/details/20907911
布隆过滤器概念
数据如何存入布隆过滤器
布隆过滤器是由一个很长的二进制矢量和一系列哈希函数组成的。
二进制矢量本质是一个位数组:数组的每个元素都只占1bit空间,并且每个元素只能为0或1。
布隆过滤器还拥有k个哈希函数,当一个元素加入布隆过滤器中的时候,会使用k个哈希函数对其进行k次计算,得到k个哈希值,并且根据得到的哈希值,在维数组中把对应下标的值置位1。
若要判断这个数是否在布隆过滤器中,就对该元素进行k次哈希计算,得到的值在位数组中判断每个元素是否都为1,如果每个元素都为1,就说明这个值在布隆过滤器中。
误判情况
布隆过滤器只能插入不能删除,所以插入的元素越来越多时,当一个不在布隆过滤器中的元素,经过同样规则的哈希计算之后,得到的值在位数组中查询,有可能这些位置因为其他的元素先被置1了。所以布隆过滤器存在误判的情况,但是如果布隆过滤器判断某个元素不在布隆过滤器中,那么这个值就一定不在。
如何补救这个情况呢,可以设立白名单,存储可能会被误判的元素。
综上所述,布隆过滤器可精确的代表一个集合,可精确判断某一元素是否在此集合中,精确程度由用户的具体设计决定,达到100%的正确是不可能的。但是布隆过滤器的优势在于,利用很少的空间可以达到较高的精确率。
实际应用面试题
不安全网页的黑名单包含100亿个黑名单网页,每个网页的URL