29、基于结构相似性指数和刚刚可察觉的差异范式的图像质量评估

基于结构相似性指数和刚刚可察觉的差异范式的图像质量评估

1. 引言

在图像处理和计算机视觉领域,图像质量评估(IQA, Image Quality Assessment)是衡量图像质量优劣的重要手段。传统的图像质量评估方法主要依赖于客观的质量度量,如峰值信噪比(PSNR)和均方误差(MSE)。然而,这些方法往往未能充分反映人类视觉系统(HVS, Human Visual System)的感知特性。近年来,结构相似性指数(SSIM, Structural Similarity Index Measure)作为一种更加符合人类视觉感知的客观度量标准,受到了广泛关注。

为了进一步提升图像质量评估的准确性,本章探讨了结合刚刚可察觉的差异(JND, Just Noticeable Difference)范式的SSIM评估方法。通过网络实验,研究人员利用一组人类参与者样本,旨在量化SSIM值的趋势,以确定人类视觉系统何时开始能够感知到对参考图像施加的失真。

2. SSIM简介

SSIM是一种衡量两幅图像相似度的度量标准,它不仅考虑了图像的亮度、对比度,还引入了结构信息,使其更接近人类视觉感知。SSIM的计算公式如下:

[
\text{SSIM}(x, y) = \frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}
]

其中,( x ) 和 ( y ) 分别表示参考图像和失真图像;( \mu_x ) 和 ( \mu_y ) 分别表示两幅图像的平均亮度;( \

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值