sklearn 的基本机器学习(分类方法)

本文介绍了sklearn库中的三种基本机器学习分类方法:KNN算法,SVM原理及其应用,以及随机森林的集成学习思想。KNN通过寻找最近邻进行分类,SVM则利用间隔最大化进行样本分类,而随机森林则是通过组合多个决策树进行预测。文章还包含了相应的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.

KNN原理:

存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中最相似数据(最近邻)的分类标签。一般来说,只选择样本数据集中前k个最相似的数据,这就是KNN算法

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值