“华为杯”研究生数学建模竞赛2018年-【华为杯】C题:对恐怖袭击事件记录数据的量化分析

目录

摘 要:

一、 问题背景与重述

1.1 问题背景

1.2 问题重述

二、 问题分析

三、 基本假设及符号说明

3.1 基本假设

3.2 符号说明

四、问题一的建模与求解

4.1 模型的构建

4.1.1 解题思路

4.1.2 最优权重计算——主客观集成法

4.1.3 灰色关联度分析评价

4.2 模型的求解

4.2.1 数据预处理

4.2.2 因子分析特征降维

4.2.3 最优权重计算

4.2.4 灰色综合评价划分危害等级

五、 问题二的建模与求解

5.1 模型的构建

5.1.1 基于 OPSTIC 算法的恐怖袭击事件聚类模型

5.1.2 恐怖组织及个人危害性综合评分模型

5.1.3 基于 XGBoost 的恐怖组织或个人嫌疑判断模型

5.2 模型的求解

5.2.1 数据预处理

5.2.2 基于 OPSTICS 算法的恐怖袭击事件聚类模型求解

5.2.3 恐怖组织危害性排序模型求解

5.2.4 基于 XGBoost 的恐怖组织或个人嫌疑判断模型求解

六、问题三的建模与求解

6.1 全球恐怖袭击时空分布总体特征

6.2 恐怖主义蔓延趋势

6.3 空间聚集与热点分析

6.3.1 空间集聚性模型构建

6.3.2 恐怖袭击事件特征的空间集聚性与热点

6.4 结论与建议

七、问题四的建模与求解

7.1 恐怖袭击死亡人数的影响因素研究

7.1.1 问题提出

7.1.2 模型构建:lightgbm-logistic 串行模型求解

7.1.3 问题求解

7.2 恐怖袭击事件数增长率的 ARMA 干预模型

7.2.1 问题提出

7.2.2 模型的构建:ARMA 干预模型

八、模型评价与改进

参考文献

代码实现


要:

随着全球非常规突发事件频发,公共安全领域越来越受到重视。恐怖袭击作
为一种非常规突发事件,引起了全球高度关注。近年来,全球恐怖袭击活动有增
无减,就我国而言,恐怖袭击已经从南疆地区发展到了全疆,并有向全国蔓延的
趋势。因此,研究恐怖袭击事件危害程度、主要原因、时空特征、蔓延趋势等特
点,对全球反恐活动和政策有非常重大的意义。本文主要运用了主客观组合赋权
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

格图素书

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值