题目
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
分析
这题与"Unique Paths"的解法相同,需注意的是若某个位置有障碍则到达该位置的走法为0,状态转移方程变为a[j] = obstacleGrid[j][i] ? 0 : a[j-1] + a[j];
代码
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> >& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
int i,j;
vector<int> a(m);
a[0] = obstacleGrid[0][0] ? 0 : 1;
for (i = 1;i < m;i++)
a[i] = obstacleGrid[i][0] ? 0 : a[i-1];
for (i = 1;i < n;i++)
{
a[0] = obstacleGrid[0][i] ? 0 : a[0];
for (j = 1;j < m;j++)
a[j] = obstacleGrid[j][i] ? 0 : a[j-1] + a[j];
}
return a[m-1];
}
};