Unique Paths II

题目

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

分析

这题与"Unique Paths"的解法相同,需注意的是若某个位置有障碍则到达该位置的走法为0,状态转移方程变为a[j] = obstacleGrid[j][i] ? 0 : a[j-1] + a[j];

代码

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int> >& obstacleGrid) {
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        int i,j;
        vector<int> a(m);
		a[0] = obstacleGrid[0][0] ? 0 : 1;
        for (i = 1;i < m;i++)
        	a[i] = obstacleGrid[i][0] ? 0 : a[i-1];
        for (i = 1;i < n;i++)
        {
        	a[0] = obstacleGrid[0][i] ? 0 : a[0];
        	for (j = 1;j < m;j++)
        		a[j] = obstacleGrid[j][i] ? 0 : a[j-1] + a[j];
		}
		return a[m-1];
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值