2014 鞍山 现场赛 E题题解

本文深入探讨了区间动态规划的问题特点及解决思路,强调了通过合理划分阶段并利用更小区间的最优值来推导整个区间的最优解的方法。文章通过具体实例讲解了如何正确建立状态转移方程,并附带了一个C++实现的例子。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

只说下本弱的失误。

虽然一眼看出来了阶段的特征,但是在思考dp的时候还是被(x,y)+(y,z)这种形式的求解策略桎梏。

应该转变视角再来看待这个问题,不然永远会被这种直观的思维桎梏 。

(x,y)+(y,z)+......这种形式,每个点都只与前后两个sorce()有关,明显的阶段划分。当前i个的最大值已知,此时b[i+1]元素来了。死到这里了×

由i状态与b[i]推导i+1状态

区间动态规划问题一般都是考虑,对于每段区间,他们的最优值都是由几段更小区间的最优值得到,是分治思想的一种应用,将一个区间问题不断划分为更小的区间直至一个元素组成的区间,枚举他们的组合,求合并后的最优值。

以..为结束的..,空间解,

上面那种想法是常用的DP思维,得到i与i+1的关系,将物品/动作等当作阶段量,阶段量的关系联系到转移方程 eg:

DP常见转移方程

矩阵链乘,当第i+1个来了,结合方式就很明白看到(实为分治法,存储状态)。

背包中状态的转移可以这样看,前i个物品将得到可解空间的状态的最优填充情况

最长公共子串 dp[i][j]表示以两个字符串分别以i和第j个字符结尾所能达到的公共子序列的长度

最长公共子序列(两个操作实体对象且有匹配),我们可以规定dp[i][j]字符串1的前i个字符和字符串2的前j个字符的最长公共子序列的长度依据s[i],t[j]的关系由dp[i-1][j-1],dp[i][j-1],dp[i-1][j]转移到dp[i][j]



#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#define max(a,b) a>b?a:b
using namespace std;
int a[100][100];
int dp[110][55];
int b[110];

int main()
{
    int i,j,k;
	int n,m;
	int T;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d%d",&n,&m);
		for(i=1;i<=m;i++)
			for(j=1;j<=m;j++)
				scanf("%d",a[i]+j);
		for(i=1;i<=n;i++)
			scanf("%d",b+i);
		memset(dp,0,sizeof(dp));
		int ans=-1;
		for(i=1;i<=n;i++)
		{
			for(j=1;j<=m;j++)
			{
				if(b[i]>0 && j!=b[i])
					dp[i][j]=-1;
				if(dp[i][j]==-1) continue;
				for(k=1;k<=m;k++)
					dp[i+1][k]=max(dp[i+1][k],dp[i][j]+a[j][k]);
			}
		}
		for(i=1;i<=m;i++)
			ans=max(ans,dp[n][i]);
		printf("%d\n",ans);
	}



	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值