ClickHouse Native JDBC 使用教程

ClickHouse Native JDBC 使用教程

项目介绍

ClickHouse Native JDBC 是一个基于 ClickHouse 原生 TCP 协议实现的 JDBC 驱动。该项目旨在提供一个高效、稳定的 ClickHouse 数据库连接方式,支持与 Apache Spark 等大数据处理框架的集成。ClickHouse Native JDBC 项目遵循 Apache License 2.0 开源协议,由社区维护。

项目快速启动

环境要求
  • Java 8 或更高版本
  • Scala 2.11/2.12 或更高版本(如果使用 Spark 集成)
  • Spark 2.4 或更高版本(可选)

安装

Gradle 安装

推荐使用 shaded 版本:

// (recommended) shaded version available since 2.3-stable
compile "com.github.housepower:clickhouse-native-jdbc-shaded:$[clickhouse_native_jdbc_version]"

// normal version
compile "com.github.housepower:clickhouse-native-jdbc:$[clickhouse_native_jdbc_version]"
Maven 安装

推荐使用 shaded 版本:

<!-- (recommended) shaded version available since 2.3-stable -->
<dependency>
    <groupId>com.github.housepower</groupId>
    <artifactId>clickhouse-native-jdbc-shaded</artifactId>
    <version>$[clickhouse-native-jdbc version]</version>
</dependency>

<!-- normal version -->
<dependency>
    <groupId>com.github.housepower</groupId>
    <artifactId>clickhouse-native-jdbc</artifactId>
    <version>$[clickhouse-native-jdbc version]</version>
</dependency>

示例代码

以下是一个简单的示例代码,展示如何使用 ClickHouse Native JDBC 连接到 ClickHouse 数据库并执行查询:

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;

public class ClickHouseExample {
    public static void main(String[] args) {
        try {
            // 加载驱动
            Class.forName("com.github.housepower.jdbc.ClickHouseDriver");

            // 建立连接
            String url = "jdbc:clickhouse://localhost:8123";
            Connection connection = DriverManager.getConnection(url);

            // 创建语句
            Statement statement = connection.createStatement();

            // 执行查询
            ResultSet resultSet = statement.executeQuery("SELECT 1");

            // 处理结果
            while (resultSet.next()) {
                System.out.println(resultSet.getInt(1));
            }

            // 关闭连接
            resultSet.close();
            statement.close();
            connection.close();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

应用案例和最佳实践

集成 Apache Spark

ClickHouse Native JDBC 可以与 Apache Spark 集成,用于大规模数据处理。以下是一个简单的集成示例:

环境要求
  • Java 8 或更高版本
  • Scala 2.11/2.12 或更高版本
  • Spark 2.4 或更高版本
集成步骤
  1. 添加依赖:
// available since 2.4.0
compile "com.github.housepower:clickhouse-integration-spark_2.11:$[clickhouse_native_jdbc_version]"
  1. 编写 Spark 代码:
import org.apache.spark.sql.SparkSession

object ClickHouseSparkExample {
    def main(args: Array[String]): Unit = {
        val spark = SparkSession.builder()
            .appName("ClickHouseSparkExample")
            .getOrCreate()

        val url = "jdbc:clickhouse://localhost:8123"
        val df = spark.read.format("jdbc")
            .option("url", url)
            .option("dbtable", "default.table_name")
            .load()

        df.show()

        spark.stop()
    }
}

最佳实践

  • 使用 shaded 版本以避免依赖冲突。
  • 在高并发场景下,合理配置连接池参数以提高性能。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

廉欣盼Industrious

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值