开源项目SER-datasets使用教程
1. 项目的目录结构及介绍
SER-datasets项目的目录结构如下:
├── dataset
│ ├── crema-d # CREMA-D 数据集
│ ├── meld # MELD 数据集
│ ├── mlend # MLEnd 数据集
│ ├── ravdess # RAVDESS 数据集
│ ├── savee # SAVEE 数据集
│ ├── tess # TESS 数据集
│ ├── esd # Emotional Voice Conversion: Theory Databases and ESD 数据集
│ └── jl-corpus # JL Corpus 数据集
├── MakeEngSpeechDataset.ipynb # 创建包含8个数据集的数据框
├── SpeechEDA.ipynb # 使用Pandas Profiling进行EDA
├── speech_dataset.csv # 主数据集
└── report.html # EDA报告
目录结构介绍
dataset
:包含8个不同的英语情感识别数据集。MakeEngSpeechDataset.ipynb
:用于创建包含所有数据集的数据框的Jupyter Notebook。SpeechEDA.ipynb
:用于使用Pandas Profiling进行探索性数据分析的Jupyter Notebook。speech_dataset.csv
:合并后的主数据集文件。report.html
:探索性数据分析的报告文件。
2. 项目的启动文件介绍
项目的启动文件是MakeEngSpeechDataset.ipynb
和SpeechEDA.ipynb
。
MakeEngSpeechDataset.ipynb
这个Jupyter Notebook文件用于创建一个包含所有数据集的数据框。它将各个数据集合并成一个统一的数据集,方便后续的分析和处理。
SpeechEDA.ipynb
这个Jupyter Notebook文件用于进行探索性数据分析(EDA)。它使用Pandas Profiling工具来生成数据集的详细报告,包括数据的统计信息、缺失值、相关性等。
3. 项目的配置文件介绍
该项目没有明确的配置文件。所有的配置和参数设置都在Jupyter Notebook文件中进行。用户可以根据需要修改Notebook中的代码来调整数据处理和分析的参数。
总结
SER-datasets项目主要通过Jupyter Notebook文件进行数据集的合并和分析。用户可以通过运行这些Notebook文件来生成统一的数据集和进行数据分析。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考