ggstatsplot中的ggdotplotstats函数详解:数据探索与统计可视化
概述
ggstatsplot是一个基于ggplot2的扩展包,它集成了统计分析与可视化功能,能够帮助研究人员和数据科学家快速生成包含统计细节的图表。其中,ggdotplotstats函数是该包中一个强大的工具,专门用于创建带有统计信息的点图(dot plot)。
ggdotplotstats核心功能
ggdotplotstats主要用于数据探索和创建出版级点图,它特别适合处理带有标签的数值变量。与gghistostats函数类似,但针对的是不同类型的数据展示需求。
基本用法示例
我们以ggplot2包中的mpg数据集为例,展示如何分析不同汽车制造商的油耗分布:
# 加载必要库
library(ggstatsplot)
library(dplyr)
library(paletteer)
# 预处理数据
df <- filter(ggplot2::mpg, cyl %in% c("4", "6"))
# 创建颜色向量
paletter_vector <- paletteer_d(
palette = "palettetown::venusaur",
n = nlevels(as.factor(df$manufacturer)),
type = "discrete"
)
# 绘制点图
ggdotplotstats(
data = df,
x = cty, # 城市油耗
y = manufacturer, # 制造商
xlab = "城市每加仑英里数",
ylab = "汽车制造商",
test.value = 15.5, # 测试值
point.args = list(
shape = 16,
color = paletter_vector,
size = 5
),
title = "汽车油耗分布",
ggtheme = theme_dark()
)
这段代码会生成一个点图,其中:
- 每个点代表一个汽车制造商的平均城市油耗
- 统计测试会显示数据与15.5这个参考值的比较结果
- 使用自定义颜色和主题增强可视化效果
分组分析功能
当我们需要按不同组别分别进行分析时,可以使用grouped_ggdotplotstats函数:
# 分组分析不同气缸数的汽车
grouped_ggdotplotstats(
data = df,
grouping.var = cyl, # 按气缸数分组
x = cty,
y = manufacturer,
xlab = "城市每加仑英里数",
ylab = "汽车制造商",
type = "bayes", # 使用贝叶斯方法
test.value = 15.5,
annotation.args = list(title = "燃油经济性数据"),
plotgrid.args = list(nrow = 2)
)
这种方法会自动为每个分组创建单独的点图,并将它们组合在一个图形中展示。
高级定制:使用purrr实现更灵活的分组分析
虽然grouped_ggdotplotstats提供了便捷的分组分析功能,但在需要更灵活控制时(如为不同组设置不同的测试值或使用不同的统计方法),可以使用purrr包实现:
# 示例代码框架
library(purrr)
df %>%
split(.$cyl) %>% # 按气缸数分组
map(~ ggdotplotstats(
data = .x,
x = cty,
y = manufacturer,
test.value = ifelse(unique(.x$cyl) == "4", 16, 15) # 为不同组设置不同测试值
)) %>%
cowplot::plot_grid(plotlist = ., nrow = 2)
这种方法允许为每个分组完全自定义分析参数,提供了最大的灵活性。
统计测试与可视化细节
ggdotplotstats默认会执行以下统计测试:
- 单样本t检验(比较数据与指定测试值)
- 效应量计算(Cohen's d)
- 贝叶斯因子计算(可选)
可视化方面,函数会自动:
- 添加均值参考线
- 显示统计测试结果
- 提供数据分布信息
结果报告建议
当在学术论文或报告中呈现ggdotplotstats的结果时,建议包含以下信息:
- 使用的统计方法(参数检验/非参数检验/贝叶斯方法)
- 效应量大小及其解释
- 贝叶斯因子(如果使用)及其证据强度解释
- 可视化中展示的关键发现
例如,可以这样描述结果: "贝叶斯t检验显示,在4缸和6缸汽车中,城市油耗与参考值(15.5)存在显著差异。效应量(g=1.22)按照Cohen标准属于大效应。贝叶斯因子分析表明数据支持备择假设的证据强度为中等。"
最佳实践与技巧
- 数据预处理:确保y轴变量是因子类型,以获得最佳标签显示效果
- 颜色选择:使用paletteer包可以轻松获得美观的颜色方案
- 主题定制:通过ggtheme参数可以快速切换不同的ggplot2主题
- 统计方法选择:根据数据类型选择"parametric"、"nonparametric"或"bayes"方法
- 结果解释:结合统计结果和可视化模式,提供全面的数据解读
总结
ggdotplotstats是ggstatsplot包中一个功能强大的工具,它简化了探索性数据分析和统计结果可视化的流程。通过本文介绍的基本用法、分组分析技巧和高级定制方法,研究人员可以快速生成既美观又包含丰富统计信息的点图,从而更有效地理解和展示数据特征。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考