ggstatsplot中的ggdotplotstats函数详解:数据探索与统计可视化

ggstatsplot中的ggdotplotstats函数详解:数据探索与统计可视化

概述

ggstatsplot是一个基于ggplot2的扩展包,它集成了统计分析与可视化功能,能够帮助研究人员和数据科学家快速生成包含统计细节的图表。其中,ggdotplotstats函数是该包中一个强大的工具,专门用于创建带有统计信息的点图(dot plot)。

ggdotplotstats核心功能

ggdotplotstats主要用于数据探索创建出版级点图,它特别适合处理带有标签的数值变量。与gghistostats函数类似,但针对的是不同类型的数据展示需求。

基本用法示例

我们以ggplot2包中的mpg数据集为例,展示如何分析不同汽车制造商的油耗分布:

# 加载必要库
library(ggstatsplot)
library(dplyr)
library(paletteer)

# 预处理数据
df <- filter(ggplot2::mpg, cyl %in% c("4", "6"))

# 创建颜色向量
paletter_vector <- paletteer_d(
  palette = "palettetown::venusaur",
  n = nlevels(as.factor(df$manufacturer)),
  type = "discrete"
)

# 绘制点图
ggdotplotstats(
  data = df,
  x = cty,  # 城市油耗
  y = manufacturer,  # 制造商
  xlab = "城市每加仑英里数",
  ylab = "汽车制造商",
  test.value = 15.5,  # 测试值
  point.args = list(
    shape = 16,
    color = paletter_vector,
    size = 5
  ),
  title = "汽车油耗分布",
  ggtheme = theme_dark()
)

这段代码会生成一个点图,其中:

  • 每个点代表一个汽车制造商的平均城市油耗
  • 统计测试会显示数据与15.5这个参考值的比较结果
  • 使用自定义颜色和主题增强可视化效果

分组分析功能

当我们需要按不同组别分别进行分析时,可以使用grouped_ggdotplotstats函数:

# 分组分析不同气缸数的汽车
grouped_ggdotplotstats(
  data = df,
  grouping.var = cyl,  # 按气缸数分组
  x = cty,
  y = manufacturer,
  xlab = "城市每加仑英里数",
  ylab = "汽车制造商",
  type = "bayes",  # 使用贝叶斯方法
  test.value = 15.5,
  annotation.args = list(title = "燃油经济性数据"),
  plotgrid.args = list(nrow = 2)
)

这种方法会自动为每个分组创建单独的点图,并将它们组合在一个图形中展示。

高级定制:使用purrr实现更灵活的分组分析

虽然grouped_ggdotplotstats提供了便捷的分组分析功能,但在需要更灵活控制时(如为不同组设置不同的测试值或使用不同的统计方法),可以使用purrr包实现:

# 示例代码框架
library(purrr)

df %>%
  split(.$cyl) %>%  # 按气缸数分组
  map(~ ggdotplotstats(
    data = .x,
    x = cty,
    y = manufacturer,
    test.value = ifelse(unique(.x$cyl) == "4", 16, 15)  # 为不同组设置不同测试值
  )) %>%
  cowplot::plot_grid(plotlist = ., nrow = 2)

这种方法允许为每个分组完全自定义分析参数,提供了最大的灵活性。

统计测试与可视化细节

ggdotplotstats默认会执行以下统计测试:

  1. 单样本t检验(比较数据与指定测试值)
  2. 效应量计算(Cohen's d)
  3. 贝叶斯因子计算(可选)

可视化方面,函数会自动:

  1. 添加均值参考线
  2. 显示统计测试结果
  3. 提供数据分布信息

结果报告建议

当在学术论文或报告中呈现ggdotplotstats的结果时,建议包含以下信息:

  1. 使用的统计方法(参数检验/非参数检验/贝叶斯方法)
  2. 效应量大小及其解释
  3. 贝叶斯因子(如果使用)及其证据强度解释
  4. 可视化中展示的关键发现

例如,可以这样描述结果: "贝叶斯t检验显示,在4缸和6缸汽车中,城市油耗与参考值(15.5)存在显著差异。效应量(g=1.22)按照Cohen标准属于大效应。贝叶斯因子分析表明数据支持备择假设的证据强度为中等。"

最佳实践与技巧

  1. 数据预处理:确保y轴变量是因子类型,以获得最佳标签显示效果
  2. 颜色选择:使用paletteer包可以轻松获得美观的颜色方案
  3. 主题定制:通过ggtheme参数可以快速切换不同的ggplot2主题
  4. 统计方法选择:根据数据类型选择"parametric"、"nonparametric"或"bayes"方法
  5. 结果解释:结合统计结果和可视化模式,提供全面的数据解读

总结

ggdotplotstats是ggstatsplot包中一个功能强大的工具,它简化了探索性数据分析和统计结果可视化的流程。通过本文介绍的基本用法、分组分析技巧和高级定制方法,研究人员可以快速生成既美观又包含丰富统计信息的点图,从而更有效地理解和展示数据特征。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

申梦珏Efrain

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值