弱监督度量学习在all-umass/metric-learn项目中的应用指南

弱监督度量学习在all-umass/metric-learn项目中的应用指南

什么是弱监督度量学习

弱监督度量学习是度量学习的一个分支,它不需要像监督学习那样精确的标签数据,而是通过更"弱"的监督信息来学习数据点之间的距离度量。在all-umass/metric-learn项目中,弱监督算法接受的是数据点元组(如相似/不相似的点对)作为输入,而不是传统的标签数据。

弱监督度量学习的核心概念

输入数据结构

弱监督算法主要处理两种形式的输入数据:

  1. 3D数组形式:直接表示元组中的每个数据点

    • 形状:(n_tuples, tuple_size, n_features)
    • 适用于小规模数据,但内存效率不高
  2. 2D索引数组+预处理器:更高效的表示方式

    • 只存储数据点在原始数据集中的索引
    • 需要配合预处理器(preprocessor)使用,指定原始数据X

基本API工作流程

# 初始化算法
ml_algorithm = MetricLearningAlgorithm()

# 拟合模型
ml_algorithm.fit(tuples, y)

# 转换新数据
transformed_data = ml_algorithm.transform(new_data)

# 计算点对距离
distances = ml_algorithm.pair_distance(pairs)

基于点对的度量学习

算法拟合

点对学习是最常见的弱监督形式,算法接受点对和标签(+1表示相似,-1表示不相似):

from metric_learn import MMC

# 示例数据
pairs = np.array([[[1.2, 3.2], [2.3, 5.5]],
                 [[4.5, 2.3], [2.1, 2.3]]])
y_pairs = np.array([1, -1])  # 第一对相似,第二对不相似

# 训练模型
mmc = MMC(random_state=42)
mmc.fit(pairs, y_pairs)

预测与评分

训练好的模型可以预测新点对的相似性:

new_pairs = np.array([[[0.6, 1.6], [1.15, 2.75]],
                    [[3.2, 1.1], [5.4, 6.1]]])
predictions = mmc.predict(new_pairs)  # 返回+1或-1

模型还提供决策函数和评分功能:

# 获取决策分数(距离的相反数)
scores = mmc.decision_function(new_pairs)

# 模型评分(默认使用ROC AUC)
test_pairs = [...]
test_y = [...]
score = mmc.score(test_pairs, test_y)

阈值校准

预测相似性需要设置距离阈值,有三种校准方式:

  1. 训练时自动校准

    mmc.fit(pairs, y, threshold_params={'method': 'accuracy'})
    
  2. 验证集手动校准

    mmc.calibrate_threshold(val_pairs, val_y)
    
  3. 直接设置阈值

    mmc.set_threshold(0.5)
    

核心算法解析

ITML (信息理论度量学习)

ITML通过最小化两个多元高斯分布之间的KL散度来学习距离度量,其优化目标是:

min_M tr(MM₀⁻¹) - log det(MM₀⁻¹) - n

约束条件:

  • 相似点对的距离 ≤ u
  • 不相似点对的距离 ≥ l

其中M₀是先验距离度量(默认为单位矩阵)。

特点

  • 不依赖特征值计算或半正定规划
  • 可以处理多种约束类型
  • 可以融入先验距离知识

示例代码

from metric_learn import ITML

itml = ITML()
itml.fit(pairs, y)

SDML (稀疏高维度量学习)

SDML通过双重正则化在高维空间中学习稀疏度量:

  1. 对马氏矩阵非对角元素的L1惩罚
  2. M与M₀之间的对数行列式散度

优化目标: min_M tr((M₀ + ηXLXᵀ)M) - log det M + λ||M||₁,off

特点

  • 适合高维数据
  • 产生稀疏解
  • 计算效率高

示例代码

from metric_learn import SDML

sdml = SDML()
sdml.fit(pairs, y)

实际应用建议

  1. 数据准备

    • 对于大规模数据,优先使用索引+预处理器方式
    • 确保元组标签的语义清晰(相似/不相似)
  2. 模型选择

    • 高维数据考虑SDML
    • 需要融入先验知识考虑ITML
  3. 评估验证

    • 使用交叉验证评估模型性能
    • 注意阈值校准对预测结果的影响
  4. 与scikit-learn集成

    • 所有算法兼容scikit-learn的模型选择工具
    • 可以用于Pipeline和GridSearchCV
from sklearn.model_selection import cross_val_score

scores = cross_val_score(mmc, pairs_indices, y, cv=5)

弱监督度量学习为缺乏精确标签的场景提供了有效的解决方案,all-umass/metric-learn项目实现了多种先进算法,开发者可以根据具体需求选择合适的算法和配置。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

单迅秋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值