TensorFlow Extended (TFX) 中的公平性指标使用指南

TensorFlow Extended (TFX) 中的公平性指标使用指南

什么是公平性指标?

公平性指标(Fairness Indicators)是TensorFlow Extended(TFX)生态系统中的一个重要组件,它专门用于评估和改进机器学习模型的公平性。在当今AI应用日益广泛的背景下,确保模型不会对特定人群产生偏见变得至关重要。

公平性指标库能够:

  1. 计算常见的公平性指标(适用于二分类和多分类问题)
  2. 处理大规模数据集和模型(支持十亿级用户系统)
  3. 提供置信区间和多阈值评估
  4. 深入分析特定数据切片,找出问题根源

核心组件

公平性指标作为TFX的一部分,与以下工具紧密集成:

  1. TensorFlow数据验证(TFDV):用于分析数据分布
  2. TensorFlow模型分析(TFMA):用于模型评估
  3. What-If工具(WIT):用于交互式模型探索

在TensorFlow模型中使用公平性指标

数据准备

使用公平性指标前,需要确保评估数据集已标记好您想要分析的切片特征。如果缺乏直接相关的特征,可以考虑:

  1. 寻找包含相关特征的评估集
  2. 使用现有特征中的代理特征

配置数据切片

定义您想要评估的切片,支持单一特征切片和交叉特征切片:

# 单一特征切片
slice_spec = [tfma.slicer.SingleSliceSpec(columns=['年龄'])]

# 交叉特征切片
slice_spec = [tfma.slicer.SingleSliceSpec(columns=['年龄', '性别'])]

计算公平性指标

添加公平性指标回调并定义评估阈值:

from tensorflow_model_analysis.addons.fairness.post_export_metrics import fairness_indicators

metrics_callbacks = [
    tfma.post_export_metrics.fairness_indicators(thresholds=[0.1, 0.3, 0.5, 0.7, 0.9])
]

eval_shared_model = tfma.default_eval_shared_model(
    eval_saved_model_path=model_dir,
    add_metrics_callbacks=metrics_callbacks)

运行评估

可选择是否计算置信区间(基于泊松自助法,需要20次重采样):

compute_confidence_intervals = True

执行评估管道:

with beam.Pipeline() as pipeline:
    _ = (
        pipeline
        | beam.Create(dataset)
        | '评估' >> tfma.ExtractEvaluateAndWriteResults(
            eval_shared_model=eval_shared_model,
            slice_spec=slice_spec,
            compute_confidence_intervals=compute_confidence_intervals,
            output_path=output_path)
    )
eval_result = tfma.load_eval_result(output_path)

可视化结果

from tensorflow_model_analysis.addons.fairness.view import widget_view
widget_view.render_fairness_indicator(eval_result=eval_result)

可视化界面提供以下功能:

  1. 选择要显示的指标
  2. 更改基线切片
  3. 选择/取消选择阈值
  4. 悬停查看详细指标
  5. 识别与基线的差异
  6. 深入探索特定切片

多模型比较

公平性指标支持同时比较多个模型:

multi_eval_results = {
    "模型A": eval_result1, 
    "模型B": eval_result2
}
widget_view.render_fairness_indicator(multi_eval_results=multi_eval_results)

在非TensorFlow模型中使用公平性指标

公平性指标也支持评估非TensorFlow模型,通过以下步骤实现:

数据准备

数据需要转换为tf.Example格式,包含预测值、标签值和切片特征:

tf.Example {
    features {
        feature { key: "年龄" value { bytes_list { value: "30-40" } } }
        feature { key: "预测值" value { float_list { value: 0.75 } } }
        feature { key: "标签值" value { float_list { value: 1.0 } } }
    }
}

模型无关配置

定义特征映射和模型无关配置:

feature_map = {
    "年龄": tf.FixedLenFeature([], tf.string),
    "预测值": tf.FixedLenFeature([], tf.float32),
    "标签值": tf.FixedLenFeature([], tf.float32)
}

model_agnostic_config = model_agnostic_predict.ModelAgnosticConfig(
    label_keys=["标签值"],
    prediction_keys=["预测值"],
    feature_spec=feature_map)

设置提取器

model_agnostic_extractors = [
    model_agnostic_extractor.ModelAgnosticExtractor(
        model_agnostic_config=model_agnostic_config),
    slice_key_extractor.SliceKeyExtractor([
        slicer.SingleSliceSpec(columns=['年龄'])
    ])
]

计算指标

添加公平性指标回调并运行评估:

metrics_callbacks = [
    post_export_metrics.fairness_indicators(thresholds=[0.5])
]

eval_shared_model = types.EvalSharedModel(
    add_metrics_callbacks=metrics_callbacks,
    construct_fn=model_agnostic_evaluate_graph.make_construct_fn(
        add_metrics_callbacks=metrics_callbacks))

_ = (
    examples
    | '评估' >> model_eval_lib.ExtractEvaluateAndWriteResults(
        eval_shared_model=eval_shared_model,
        extractors=model_agnostic_extractors,
        output_path=output_path))

最佳实践

  1. 选择合适的切片特征:选择与业务场景相关的敏感特征进行切片分析
  2. 多阈值评估:不要只依赖默认阈值(如0.5),评估多个阈值下的表现
  3. 置信区间:对于小样本切片,使用置信区间评估结果的可靠性
  4. 交叉特征分析:检查不同特征组合对模型表现的影响
  5. 持续监控:将公平性评估纳入模型监控流程,而不仅是一次性检查

公平性指标为机器学习团队提供了一套强大的工具,帮助他们在模型开发和生产过程中识别和解决公平性问题。通过系统地评估模型在不同人群中的表现,我们可以构建更加公平、可靠的AI系统。

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

支然苹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值